О. В. Морозова ${ }^{1,2}$, А. Е. Гришечкии ${ }^{2}$, Л. С. Карань ${ }^{3}$, Е. И. Исаева², Л. Д. Щцчинова", Н. В. Логинова², В. И. Зпобии ${ }^{2}$ s

Детекция вируса клещевого энцефалита в иксодовых клещах, собранных в природном очаге Горного Алтая

 Роспотребнадзора по Республике Алтай, Горно-Алтайск; ${ }^{5}$ Иркутский государственный медицинский универснтет Росздрава

Abstract

Детекция вируса клөщөвого энцефалита (ВКЭ) в образцах иксодовых клющөй, собранных в мае 2007 г. в окрөстностях поселка Манхерок Майминского района Республики Алтай, посредством иммуноферментного анализа показала наличие антигена ВКЭ в $16,9 \pm 1,9 \%$ таежных клещөй. На основании ОТ-ПЦР в рөальном времөни с гөнотипспецифичными флюорөсцентными зондами и филогенетического анализа нукпөотидных посләдовательностей продуктов ОТ-ПЦР, соотвөтствующих 5 '-концөвому фрагменту гена Е ВКЭ, все изоляты вмруса, выделөнные от клещей, собранных в Горном Алтае, отнесены к сибирскому генетичесхому типу, доминирующему в клөщах-перөносчиках в большинстве эндешичных областей России и блихнего зарубөжья. Количественные оцөнки вирусной нагрузки посрөдством ОТ-ПЦР с зондами в реальнош времени показали пороговые циклы $\mathrm{Ct}=25,34-28,98$, которые с учетом эффективности выделения РНК и обратной транскрипции соответствовали приблизительно $10^{4}-10^{5}$ копиям вирусной РНК в кгеще.

> Ключевые слова: вирус клецевого энцефалита, клетки почки эмбриона свиньи, цитопатический эффект, реакция гемаггютинации, иммуноферментный анализ на антиген Е, ОТ-ПЦР, ПЦРр реальном времени

Detection of tick-borne encephalitis virus in Ixodes ticks collected in a natural focus of Gornyl Altal

O. V. Morozova4, ${ }^{1,}$ A. E. Grishechkin', L. S. Karan', E. I. Isayeva', L. D. Shchuchinova', N. V. Loginova', V. I. Zlobin ${ }^{25}$

${ }^{1}$ Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk:
${ }^{2}$ D. I. Ivanovsky Research Institute of Virology, Ministry of Heath and Social Development of Russia, Moscow; ${ }^{3}$ Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare, Mos. cow; "Board of the Russian Inspectorate for the Protection of Consumer Rights and Human Welfare in the Republic of Altai, Gorno-Altaisk; ${ }^{5}$ Irkutsk State Medical University, Russian Agency for Health Care
Enzyme immunoassay of tick-borne encephalitis virus (TBE) in the samples of lxodes ticks collected in the outskirts of the settlement of Manzherok, Maiminsk District, Republic of Altai, revealed TBE antigen in $16.9 \pm 1.9 \%$ of the taiga ticks. Real-time reverse transcription-polymerase chain reaction (RT-PCR) with specific fluorescent probes and phylogenetic analysis of the nucleotide sequences of RT-RCR products corresponding to 5^{\prime}-terminal fragment of the E gene of TBE, all the virus strains isolated from the ticks collected in Gornyl Altai were referred to as the Siberian genetic type that was dominant in virus-carrying ticks in the majority of ondemic areas of Russia and near abroad. Viral load assays using the real-time RT-PCR with the probes indicated the threshold cycles Ct $=25.34-28.98$, which, with regard to the efficiency of RNA identiflcation and reverse transcription, was equal to about $10^{4}-10^{5}$ viral RNA copies per tick.
Key words: tick-borne encephalitis virus, pig embryo kidney cells, cytopathic effect, hemagglutination reaction, enzyme immunoassay for E antigen, reverse transcription-polymerase chain reaction, real-time transcriptionpolymerase chain reaction

В природных популяциях на территории России среди РНК-содержащих флавивирусов, переносимых клещами, доминирует вирус клещевого энцефалита (ВКЭ), а также обнаружены вирус омской геморрагической лихорадки, вирус Западного Нила и вирус Повассан. Попадая в организм человека при укусах клещей, эти вирусы способны вызывать тяжелые заболевания, нередко с инвалидизирующими или смертельными последствиями. В России на основании клинико-эпидемиологических данных обследования и результатов иммуноферментного анализа (ИФА) с лицензированными тестсистемами на антитела классов lgM и lgG (ЗАО "Вектор-Бест", Новосибирск) заболеваемость клещевым энцефалитом за 2005-2009 гг. изменялась от 4551 до 3138 случаев в год и в среднем составляла

2,6 случая на 100 тыс. населения. Регистрация этого заболевания в Республике Алтай ведется с 1950 г. и за последние 5 лет оставалась высокой (от 23,76 до 30.46 случая на 100 тыс. населения). Средний показатель заболеваемости клещевым энцефалитом за эти годы в Республике Алтай составлял 26,0 на 100 тыс. населения и превышал среднероссийский в 10 раз. Возможно, высокие уровни заболеваемости клещевым энцефалитом обусловлены обилием клещей-переносичков и позвоночных резервуарных хозяев ВКЭ в Горном Алтае. В Республике Алтай выявлено 10 видов иксодовых клещей, 90 видов млекопитающих и 300 видов птиц, являющихся переносчиками и резервуарными хозяевами ВКЭ [9]. Видовой состав клещей Республики Алтай представлен 10 видами иксодид: Ixodes persulcatus

[^0]Schulze, Ixodes pavlovskyi Pom., Ixodes trianguliceps Bir., Ixodes crenulatus Koch, Ixodes apronophorus P. Sch., Dermacentor reticulatus Fabr., Dermacentor marginatus Schulz, Dermacentor silvarum Ol., Dermacentor nuttalli Ol. u Haemophysalis concinna Koch [6].

В Республике Алтай иммунизируют население против клещевого энцефалита преимущественно вакциной "Энцевир" производства НПО "Микроген". В последние годы уровень иммунизации составлял $40,0 \pm 0,2 \%$ населения. При этом реальная иммунная прослойка взрослого населения была $36,1 \pm 2,5 \%$. Так, в 2007 г. среди 1405 обследованных доноров методом ИФА у $508(36,2 \%)$ обнаружены антитела к белку Е ВКЭ. Анализ заболеваемости показывает, что вакцинация не всегда предотвращает заболевание: по многолетним данным среди больных клещевым энцефалитом $22,7 \pm 3,3 \%$ привитых людей (из них лишь у $5,0 \pm 1,8 \%$ нарушена схема иммунизации). Однако для иммунизированных лиц заболеваемость в 2 раза ниже и характерны более легкие лихорадочные формы клещевого энцефалита.

Помимо этого, в 2007 г. $49 \pm 2 \%$ лиц, пострадавших от присасывания клещей, получили иммуноглобулин против клещевого энцефалита (821 из 1675 человек).

Развитие международного туризма в Горном Алтае повышает риск инфекции ВКЭ.

Цель данной работы состояла в детекции и идентификации изолятов ВКЭ в иксодовых клещах, собранных в Горном Алтае.

Материалы и методы

Сбор клещей. Голодных имаго таежного клеща собирали в мае 2007 г. с растительности в природном очаге клещевого энцефалита в окрестностях поселка Манжерок Майминского района ($85^{\circ} 74^{\prime}$ с. ш. и $51^{\circ} 84^{\prime}$ в. д.) Республики Алтай. Видовую принадлежность клещей определяли по морфологическим признакам [6]. Всего исследовали 404 иксодовых клеща.

ИФА клещевых суспензий выполняли с применением тест-системы "ВектоВКЭ-антиген-стрип" и "ВектоВКЭ-антиген" (ЗАО "Вектор-Бест", Новосибирск; серия № D1154) в соответствии с инструкцией производителя. Оптическую плотность измеряли на планшетном фотометре "Униплан" ("Пикон", Россия) при длине волны 450 нм. ИФА проведен для 404 проб.

Положительные в ИФА 11 проб с оптической плотностьо более 0,4 опт. ед. исследовали дополнительно посредством заражения культуры клеток почки эмбриона свиньи (СПЭВ) и ОТ-ПЦР с электрофоретической или гибридизационно-флюоресцентной детекцией продуктов реакций в реальном времени.

Заражение клеточных культур. СПЭВ в среде MEM с 10% эмбриональной телячьей сывороткой (ЭТС) выращивали до полного монослоя и проводили заражение клещевыми суспензиями, положительными в ИФА с оптической плотностью более 0,4 опт. ед. в минимальном объеме среды МЕМ без сыворотки 1 ч при $37^{\circ} \mathrm{C}$. Затем монослои клеток отмывали и добавляли среду поддержания - МЕМ с 1% ЭТС. Наблодали за развитием цитопатического эффекта в течение последуюоцих 3-5 дней. Выявленные по цитопатическому эффекту изоляты ВКЭ

идентифицировали в реакции гемагглютинации (РГА) и ИФА.

РГА проводили в соответствии с [10], используя $0,4 \%$ суспензию формалинизированных эритроцитов гуся.

ОТ-ПЦР с электрофоретической детекцией осуществляли в соответствии с [1, 7], используя амплификатор "Терцик" ("ДНК-технология", Москва). Также для обнаружения РНК ВКЭ в клещевых суспензиях проводили ПЦР в реальном времени с применением тест-системы "Амплисенс-TBEVFRT" (ЦНИИ эпидемиологии, Москва) и RotorGene 6000 ("Corbett Research", Австралия).

Для определения генетических типов ВКЭ также использовали метод ПЦР в реальном времени, разработанный и описанный ранее [5], с модификациями: праймеры для детекции европейского генетического типа были заменены на TBE-E1 CATGCCGTAGCTGGCACCGCGAGAAA и TBE-E2 CAACAGAGTAATGACCAGCAACCAGCT, зонды - на TBE-E4 FAM-CAGAGGGACTGAGTTCCA-GAACG-BQH1 и TBE-E6 FAM-TCCGTCGCT-GACCTCCTTTT-BQH1.

Молекулярное типирование проводили в двух пробирках, при этом в первой дифференцируются дальневосточный (канал детекции - FAM/Green) и сибирский (канал детекции JOE/Yellow) генетические типы, а во второй на канале FAM/Green детектируется западноевропейский генетический тип ВКЭ.

Для подтверждения специфичности детекции ВКЭ определяли нуклеотидные последовательности продуктов ОТ-ПЦР с использованием праймеров RTBE1-4 5'-GTTGACYTKGCYCAGACYGT-САТ-3' и TBEE2as 5'-CATCAGCTCCCACTC-CGATGTCAT-3', соответствующих фрагменту гена Е ВКЭ, и автоматического анализатора ДНК модели ABI 310 ("Applied Biosystems", США). Номера доступа нуклеотидных последовательностей фрагмента гена Е изолятов ВКЭ от клещей в GenBank (http://www.ncbi.nlm.nih.gov): GQ422875, GQ422876, GQ422877, GQ422879.

Результаты и обсуждение

Среди иксодовых клещей, собранных в мае 2007 г. в Республике Алтай, доминировали таежные клещи I. persulcatus Schulze, кроме этого, обнаружены 2 особи H. concinna Koch.

Анализ вирусофорности иксодовых клещей проводили посредством ИФА на антиген Е ВКЭ. Из 402 исследованных проб I. persulcatus положительными в ИФА оказались 68, что соответствовало вирусофорности $16,9 \pm 1,9 \%$. Полученные данные превышали аналогичные показатели в предшествующие годы [9]. В клещах H. concinna антиген BKЭ не обнаружен.

В результате ОТ-ПЦР с различными парами праймеров. соответствующими генам C, E и NS3, РНК ВКЭ выявлена для 10 клещевых суспензий, оптическая плотность которых по результатам ИФА превышала 0,4 о. е. На основании ОТ-ПЦР в реальном времени с флюоресцентными зондами, специфичными для 3 генетических типов ВКЭ, все изоляты ВКЭ принадлежали к сибирскому генетическому типу (рис. 1). Филогенетический анализ нуклеотидных последовательностей фрагмента гена Е длиной 773 н. п. для изолятов ВКЭ из клещевых суспензий (рис. 2) показал единую кладисти-

Рис. 1. Результаты молекулярного типирования изолятов ВКЭ с помощью ОТ-ПЦР в реальном времени с генотипспецифичными флуоресцентными зондами.

ческую группу для описанных в данной работе изолятов ВКЭ из Республики Алтай с прототипным штаммом Заусаев сибирского генетического типа ВКЭ с высоким индексом поддержки - 100. Необходимо отметить совпадение топологии филогенетических деревьев, построенных при помощи 4 альтернативных алгоритмов программы Меgа 4.0. Доминирование сибирского генетического типа ВКЭ было показано ранее для большинства эндемичных областей России и ближнего зарубежья [1-5].

В результате ОТ-ПЦР в реальном времени (см. рис. 1) пороговые циклы $\mathrm{Ct}=25,34-28,98$ соответствовали приблизительно $10^{2}-10^{3}$ геном-эквивалентам в реакционной смеси или с учетом эффективности выделения РНК и обратной транскрипции $10^{4}-10^{5}$ копиям вирусной РНК в клеще. Количественные оценки вирусной нагрузки в I. persulcatus, собранных в Горном Алтае, соответствовали предшествующим наблюдениям для иксодовых клещей из других природных очагов клещевого энцефалита методами ОТ-ПЦР $\left(10^{4}-10^{7}\right)$ [7] и ИФА ($4,0-7,5 \lg$ БОЕ/Мл) [8].

После заражения клеток СПЭВ 11 образцами клещевых суспензий, оптическая плотность которых по

результатам ИФА превышала 0,4 о. е., цитопатический эффект наблюдали для 7 образцов не ранее чем через 48 ч. Специфичность вирусной инфекции подтверждали посредством РГА с формалинизированными эритроцитами гуся, ИФА на антиген Е ВКЭ и ОТПЦР. Титры РГА непосредственно для суспензий отдельных клещей не определяли, а для соответстующих культуральных жидкостей инфицированных клеток на первом пассаже они составляли $1: 2-1: 4$, на втором и третьем пассажах возрастали и варьировали в диапазоне от $1: 32$ до $1: 128$. Титры ИФА клещевых суспензий составляли $1: 8$, в то время как титры ИФА культуральных жидкосгей СПЭВ через 48 ч после заражения были от 1:2 до 1:64 для различных штаммов ВК' в зависимости от пассажей. В результате ОТ-ПЦР с праймерами, соответствующими гену NS3, для всех 7 проб PHK, выделенных из культуральных жидкостей СПЭВ, инфицированньх клещевыми суспензиями и положительных в РГА и ИФА, наблюдали специфические продукты реакций.

Таким образом, от иксодовых клещей из природного очага клещевого энцефалита в Республике Алтай с использованием классических вирусологических и молекулярно-биологических методов вы-

Рис. 2. Филогенетический анализ нуклеотидных последовательностей фрагмента гена Е дниной 773 н. п. для изолятов ВКЭ из Республики Алтай (выделены ромбом) и различных генетических типов ВКЭ, депонированных в базе данных GenBank, посредством программы Mega 4.0, алгоритм UPGMA, 1000 репликаций.

делены изоляты ВКЭ, относящиеся к сибирскому генетическому типу и подобные штамму Заусаев по структуре гена Е и по вирусной нагрузке.

Работа проводилась частично при поддержке междисциплинарного интеграционного гранта № 83 CO PAH.

ЛИТЕРАТУРА

1. Бахвалова В. Н., Рар В. А., Ткачев С. Е. и др. Генетический анализ игтаммов вируса клещевого энцефалита Западной Сибири // Вопр. вирусол. - 2002. - Т. 45, № 5. - С. 11-13.
2. Злобин В. Н., Маиаев Л. В., Дэсиоев Ю. П. и др. Генетическне типы вируса клещевого энцефалита // Журн. инфекц. патон. - 1996. - N 4. - C. 13-17.
3. Злобин В. И., Демина Т. В., Беликов С. И. и др. Генетическое типирование штаммов вируса клещевого энцефалита на основе анализа гомологии фрагмента гена белка оболочки // Вопр. вирусол. - 2001. - № 1. - С. 16-21.
4. Згобин В. И., Верхозина М. М., Демина Т. В. и др. Молекулярная эпидемиология клещевого энцефалита // Вопр. вирусол. - 2007. - № 6. - С. 4-13.
5. Карань Л. С., Маленко Г. В., Бочкөва Н. Г. и др. Применение молекулярно-генетических методик для изучения структуры штаммов вируса клещевого энцефалита // Бюл. CO PAMH. - 2007. - № 4 (126). - C. 34-40.
6. Коклягина А. Т. Географическое распределение иксодовых клещей в Алтайском крае // Материалы краевой конференции микробиологов, эпидемиологов и инфекционистов по природно-очаговым заболеваниям в Алтайском крае. - Барнаул, 1967. - С. 31-37.
7. Морозова О. В., Бахвалова В. Н., Панов В. В. Сравнение методов детекции вируса клещевого энцефалита // Фундаментальные науки - медицине. Новосибирск, 2008. - С. 171-177.
8. Щипакин В. Н., Семаико И. В., Караванов А. С. и др. Оценка чувствительности иммуноферментного метода в определении инфекционного и неинфекционного антигенов вируса клещевого энцефалита // Вопр. вирусол. - 1989. Т. 34, № 5. - С. 634-637.
9. Щучинова Л. Д. Эпидемиологический надзор и контроль инфекций, передающихся клещами, в Республике Алтай: Автореф. дис. ... канд. мед. наук. - Омск, 2009.
10. Clarke D. H., Casals J. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses // Am. J. Trop. Med. Hyg. - 1958. - Vol. 7. - P. 561-573.

Поступила 25.02.10

Г. И. Вергейчик ${ }^{\text {I }}$, Ж. А. Стрибук ${ }^{\prime}$, В. Ф. Еремии ${ }^{2}$

Распространенность вирусов папилломы человека высокого и низкого онкогенного риска у пациенток, страдающих патологией наружных половых органов
${ }^{1}$ уо Гомельский государственный медицинский университет, ${ }^{2}$ Государственное учреждение Республиканский научно-практический центр эпидемиологии и микробиологии, Минск, Республика Беларусь

Abstract

Представлены резупьтаты обследования 49 пациенток с генитальными папилломами, лейкоплакией, дисппазией и рахом вульвы и влагалища. Основываясь на полученных данных, можно предположить важную роль вируса папилломы человека в развитии поражений вульвы и влагалища и пересмотреть значимость генотипов высокого и низкого онкогөнного риска в развитии доброкачественных новообразований, предраковых состояний и злокачественных опухолей вульвы и влагалища.

Ключевые слова: вирус папилломы человека, генитальные папилломь, рак вульвы и влагалица

Prevalence of high- and low-risk oncogenic human papillomaviruses in patients with external genital pathology

G. I. Vergeichik (Viarheichyk)', Zh. A. Stribuk (Strybuk)¹, V. F. Eremin ${ }^{2}$
${ }^{1}$ Gomel State Medical University; ${ }^{2}$ Republican Research-and-Practical Center for Epidemiology and Microbiology, Minsk, Republic of Belarus
The paper presents the results of examining 49 patients with genital papillomas, vulvar and vaginal leukoplakia, dysplasia, and cancer. The findings may suggest that human papillomavirus plays an important role in the development of vulvar and vaginal lesions and reconsider the importance of high- and low-risk oncogenic genotypes in the development of benign neoplasms, precancerous conditions, and malignant tumors of the vulva and vagina.
Key words: human papillomavirus, genital papillomas, vulvar and vaginal cancer

Ежегодно в Европе диагностируется 250000 новых спучаев генитальных бородавок, вызываемых вирусом папилломы человека (ВПЧ). Основные типы ВПЧ, выявляемые при поражениях вульвы, влагалища, шейки матки и промежности, - это $6,11,16$ и $18 ;$ более 90% случаев возникновения генитальных бородавок связаныс с ВПЧ типов 6, 11 [7]. В возрасте 15-49 лет около 40% мужчин и женщин инфицированы папилломавирусами, в 65% случаев генитальные папилломы развиваются у лиц младше 25 лет [5].

Генитальные бородавки - это широко распространенные, высококонтагиозные поражения генитального тракта. Они представляют собой фиброэпителиальные образования с тонкой ножкой или на широком основании, располагаюшиеся на поверхности кожи и слизистых оболочек в виде единичных выростов или скоплений, напоминающих петушиные гребни или цветную капусту. Существуют различные морфологические формы генитальных бородавок, к которым относятся клас-

[^1]
[^0]: Контактная информация:
 Морозова Ольға Владимировна, д-р биол. наук, вед. науч. сотр.; e-mailthe starling@yandex.ru

[^1]: Контактная информация:
 Вергейчик Галина Ивановна, канд. мед. наук, дон.; e-mail:giv2001@tut.by

