РАЗРАБОТКА ТЕСТ-СИСТЕМЫ ДЛЯ ДИАГНОСТИКИ CHLAMYDIA TRACHOMATIS HA ОСНОВE TEXHOЛОГИИ NASBA-REAL -TIME

Гущин А.Е., Рымших П.Г., Шииулин Г.А. ГУ ЦНИИ эпидемиологии МЗ СР РФ Центр молекулярной диагностики инфекционных бплезнеі Москва

Лабораторная диагностика играет ключевую роль в установлении этиологического диагноза при урогенитальной хламидийной инфекпии из-за отсутствия типичных клинических признаков и малосимптомного течения инфекционного процесса. При этом роль «золотого стандарта" все болыше играют технологии амплификации нуклеиновых кислот. вытесняя малочувствительный и субъективный метод прямой иммунорлкооресценции и трудоемкую культуральную диагностику. В нашсй стране амплификацинные технологии для диагностики раллиных инфенкıий в том числе ИППП представлены исключительно полимеразной пепной реакцией (ПЦР), в то время как за рубежом уже на протяжснии нескольких лет используются коммерческие наборы на основе альтернативных амплификационных технологий - это лигазная цепная реакция (LCR). транскрипционно-опосредованновая реакция (TMA), амплификация со сдвигом цепи (SDA). Общим для амплификационных технологий является использование в качестве мишени уникальных для того или иного вида вирусов или бактерий участков генетического материала (ДНК или РНК), что обеспечивает высокую специфичность, а такке экспоненци-

альный характер накопления продуктов реакции, обеспечивающий высокую чувствительность. В тоже время сушествуют особенности различных технологий, дающие дополнительные возможности при их использовани для диагностики инфекционных агентов.

Как альтернатива ПЦР, в основе которой лежит принцип удвоения генетического материала при делении клеточных систем, была разработана методика, моделирующая в условиях in vitro репликацию ретровирусов [1]. Методика, названная «Self-Sustained Sequence Replication» или 3SR, базируется на конкурентном действии трех ферментов, участвуюших в ретровирусной репликации - обратнуой транскриптазы, рибонуклеазы Н (РНКазаН) и ДНК-зависимой РНК-полимеразы. При амплификации PHK-мишени в изотермических условиях ($41^{\circ} \mathrm{C}$), накапливается множество копий РНК-продукта. Позднее в оптимизированном и более совершенном виде технология на основе 3SR была использована для диагностики ВИЧ под названием NASBA (Nucleic Acid Sequence-Based Amplification) [2]. Общая схема амплификаңции PHK на основе NASBA представлена на рисунке 1).

Реакция начинается гибридизацией олигонуклеотидного праймера, содержащего промотор к T7-PHK- полимеразе (праймер P1), с PHK-мишенью (сенс-РHK). AMV-обратная транскрииттаза удлиняет праймер, создавая ДНК копию с РНК матрицы и формируя гибрид РНК/ДНК. Этот гибрид является субстратом для РНКазы Н, которая гидролизует РНК-часть данного гибрида, оставляя одноцепочечную ДНК, к которой отжигается второй праймер (праймер Р2). Таким образом, формируется субстрат. пригодный для удлинения обратной транскриптазой. В конечном счете. промоторная часть приобретает двуспиральную форму с приобретением транскрипционной активности. Распознавая ставший функциональным промотор, Т7-РНК-полимераза производит множественные копии транскриптов РНК, которые являются обратными (антисенс) по отношению к исходной последовательности РНК-мишени. Каждая вновь синтезируемая молекула антисенс-РНК может выступать в качестве матрицы и может быть преобразована в промежуточную ДНК функциональным промотором Т7. Данный механизм обеспечивает генерирование множества РНК копий от РНК-мишени. Эти, вновь появившиеся молекулы РНК, в свою очередь участвукт в образовании новых копий, благодаря чему, количество молекул РНК растет по экспоненциальному закону. За 90 минут амплификации образуется до -10^{9} копий РНК.

Следует выделить некоторые особенности технологий на основе 3SR, которые могут иметь преимущество перед ПЦР при диагностике инфекционных агентов. 3 SR является изотермической реакцией, проходящей при постоянной температуре, в результате чего отпадает необходимость в программируемых термостатах - амплификаторах. Как уже было сказано, мишенью для 3SR амплификации в отличие от ПLР служит молекула PHK,

поэтому при диагностике PHK-геномных вирусов отсутствуют дополнительные манипуляции, связанные со стадией обратной транскрипции. При диагностике бактериальных инфекций мишенью лля амплификации служит рибосомальная РНК, что может давать некоторые преимущества. Во-первых, количество копий рибосомальной РНК, входящей в состав рибосом, может достигать от нескольких сотен до нескольких десятков тысяч на клетку, обеспечивая даже при минимальной концентрации бактериальных клеток в пробе лостаточно высокую концентрацию мишеней лля амплификации. Во-вторых, РНК гораздо менес стабильный по сравнению с ДНК материат и результаты амплификаиионной диагностики могут быть более адекватны эффективности проводимой антибактериальной терапии. Кроме того. продуктом амплификации являетея РНК, которая как нестабильный в окружаюшей среде материал, является контаминационно неопасной, в то время как продукты ПЦР -фрагменты ДНК, наоборот, чрезвычайно стабильны в окружающей среде и создают высокий риск контаминации. Наконец, в некоторых исследованиях, связанных с оценкой экснрессии различных генов, большой проблемой является удалсние примесей геномной ДНК при сохранении мРНК. В этом случае амплификационные технологии на основе 3 SR имеют преимуиество, т.к. не 'увствите.тьны к наличию ДНК.

Одна из модификаниіи метолики 3 SR - технология TMA (Gen-Probe. USA), лежит в основе коммерческих тест-систем дяя диапностики некоторых инфекний. в том числе C. trachomatis. Результаты многочисленних независимых испытаний показали высокие анатитические характеристики техионоги TМА при работе с клиническим материатом. Однако стоимост, таких наборов. включчя необходимое оборулованне. лелакт их неконкурентноспособными на территории РФ.

В пастоянее время NASBA явяяется запатентованным назинием технолиии, на базе которой выпускаются коммериеские наборы реагентов с торговои маркоі "NucliSens" (bioMericux. The Netherlands).

Kомптектация наборов "NucliSens» позводяет потьзовапся не только
 тики конкретных возбулитетей. но и разрабатывать ираймеры и зонин дия
 набюра" ("Nuclisens Basic Kit"), Однако значительним пренятстием дия иирокого использования технолопи NASBA в России, даже с иснользонинием "Базового набора» и возможностью самостоятельнои разработки необходимых олигонуклеотидов, оставалась пост-амптификаиинная детекиия иролуктов реакиии NASBA. Использование, как в стучае ПLР эектрофоретического разделения продуктов - проблематино и неинформативно и требуется применение специфического зонда с последуюшим анатизом результатов гибридизационного взаимодействия. До последнето времени основным способом детекшии продуктов ампиификаиии NASBA

служила ECL-детекция - достаточно трудоемкий процесс с использованием специального оборудования. В результате, себестоимость анализа в условиях отечественных лабораторий становилась бы весьма высокой.

Разработанная впервые для ПЦР и стремительно развивающаяся в последние годы технология амплификации в присутствии флюоресцентно-меченных (ФМ) зондов с детекцией продуктов в процессе реакции (Real-time PCR или ПЦР-PPB) нашла свое применение и для детекции продуктов амплимфикации NASBA. Один из форматов ФМ-зондов - «молекулярные маячки» (molecular beacons), использованный в реакции NASBA положил начало технологии NASBA-Real-time [3]. Механизм накопления уровня флюоресценции с использованием «молекулярных маячков» показан на рисунке 2.

Использование флюоресцентной детекции продуктов NASBA в процессе реакции в режиме реального времени не только упрощает процедуру анализа, но и открывает широкие возможности для разработки тест-систем на основе технологии NASBA и использования их в нашей стране.

Целью нашей работы стала разработка тест-системы для диагностики Chlamydia trachomatis на основе технологии NASBA-Real-time с использованием «Базового набора Nuclisens» (bioMerieux, The Netherlands).
«Базовый набор Nuclisens» включает в себя комплект реагентов для экстракции РНК из клинического материала (лизирующий раствор, отмывочные растворы, сорбент Silica и элюирующий буфер) и комплект реагентов для проведения амплификации (солевые компоненты, дНТФ, комплекс ферментов в виде лиофилизированной сферы с AMV- обратной транскриптазой, Т7 РНК-полимеразой, РНКазойН и необходимые для их растворения компоненты). Для проведения NASBA-Real-time используется прибор "NucliSens EasyQ Analyzer" (bioMerieux, The Netherlands).

При создании тест-системы нам предстояло решить следуюшие задачи:

1. Разработать праймеры к специфическому для C. trachomatis участку 16 S pPHK.
2. Разработать специфический ФМ-зонд «молекулярный маячок» к участку 16 S рРНК C. trachomatis, фланкированному праймерами.
3. На основе выбранного специфического для C. trachomatis участка 16 S рРНК сконструировать рекомбинантный положительныій контрольный образец РНК (ПКО РНК).
4. Разработать и сконструировать рекомбинантный внутренний контрольный образец РНК (ВКО РНК), а также специфический к нему ФМ-зонд.
5. Приготовить стандартные разведения BKO PHK и ПКО РНК для оценки аналитической чувствительности тест-системы и выбора оптимальных рабочих концентраций контрольных образцов.
6. Сравнить аналитическую чувствительность разработанной тест-сис-

темы на основе NASBA-Real-time с чувствительностью ПЦР тест-системы «Амплисенс Chlamydia trachomatis» с праймерами к криптической плазмиде на клеточной культуре, содержащей C. trachomatis.
7. Сравнить диагностическую чувствительность наборов для ПЦР и NASBA-Real-time на клиническом материале.

Результаты.

Для разработки специфических праймеров и ФМ-зонда был проведен сравнительный анализ генов 16 S PHK у широкого спектра микроорганизмов, включая представителей рода Chlamydiaceae на основе информации GeneBank. Был определен участок высоко специфический для C. trachomatis и, в пределах данного участка выбраны праймеры CTNSB1 и CTNSB2 и специфический зонд NSB-Z. Фрагмент гена 16 S pPHK C. trachomatis, включающий область праймеров был амплифицирован с помощью ПЦР и клонирован в экспрессирующий плазмидный вектор, содержащий регуляторные элементы бактериофага Т7 и необходимые структорно-функциональные элементы ms2-фага. Экспрессия РНК, содержащей участок 16 S рPHK C. trachomatis и упаковка в фаговые частицы в составе генома фага ms 2 происходила после трансформации плазмидным вектором соответствующего штамма E.coli. На основе суспензии фага ms 2 , был получен концентрированный защищенный препарат ПКО PHK. Рекомбинантный вектор с клонированным участком 16 S рPHK C. trachomatis содержал фрагмент гена gag ВИЧ, что позволило измерить концентрацию PHK с использованием количественного набора «Amplicor HIV - Monitor». На основе серии 10 -кратных разведений ПКО-РНК с известной концентрацией была определена аналитическая чувствительность разработанного набора праймеров и зонда. После оптимизации условий реакции аналитическая чувствительность составила ~ 4×10^{3} копий/мл, что соответствует чувствительности тест-системы для детекции C. trachomatis на основе NASBA с ECL-детекцией [4]. При разработке BKO-PHK была изменена гибридизационная область зонда таким образом, чтобы она не была комплиментарна нуклеотидным последовательностям, опубликованным в GeneBank. Конструирование защищенного препарата BKO PHK проводилось аналогично процедуре, описанной для ПКО РНК. При оценке степени конкуренции в процессе ко-амплификации фрагментов ПКО и ВКО была определена максимальная концентрация ВКО-РНК, при которой аналитическая чувствительность в отношении специфического фрагмента 16 S рPHK C. trachomatis не снижается. Зонд NSB-Z содержал метки Fam/BHQ1, а зонд для BKO - ICNSB-Z - метки Rox/BHQ2. Сравнение чувствительности при использовании двух технологий - ПЦР и NASBA проводилось на культуре клеток МсСоу, инфицированной клиническим изолятом C. trachomatis. Из клеточной культуры были приготовлены 10 кратные разведения препарата очищенных нуклеиновых кислот, которые использовали для амплификации разработанным комплектом реагентов

для NASBA в сравнении с ПЦР-тест-системой «Амплисенс Chlamydia trachomatis», использующей праймеры к фрагменту мультикопийной мишени хламидий - криптической плазмиде. Сравнения показали 10 -кратное превышение аналитической чувствительности NASBA по сравнению с ПЦР. При сравнении диагностической чувствительности двух технологий было исследовано 56 клинических образцов, из которых по результатам ПЦР положительных и отрицательных образцов было соответственно 29 и 27. Результаты показали 100% совпадение результатов тестирования с использованием NASBA результатам ПЦР-анализа.

Заключение. Впервые в мировой практике была разработана тест-система для диагностики Chlamydia trachomatis в клиническом материале с использованием технологии NASBA-Real-time на основе "Базового набора Nuclisense» (bioMerieux, Netherlands). Разработанный комплект реагентов включает: специфические для 16 S pPHK C. trachomatis праймеры и флюо-ресцентно-меченный гибридизационный зонд; флюоресцентно-меченный гибридизационный зонд для внутреннего контрольного образца PHK; BKO РНК и ПКО РНК в виде фаговых препаратов со стандартной концентрацией. Аналитическая чувствительность с использованием NASBA-Real-time оказалась выше по сравнению с ПЦР, в то время как диагностическая чувствительность обоих тестов была одинаковой.

Использование данной технологии в лабораторной практике может увеличить информативность молекулярно-биологического анализа.

Рисунок 1 .
Cxema amaлифмикаиии PHK на ochore NASBA

A Молекулярный маячок
(B) Гибридизация РНК-мишени и маячха
C. Гибрнд РНК-мишени и маячка
(F) Флуорофор (гапение)
(Q) Гаситель

到复
Рисунок 2.

Механизм накопления уровня флюоресценции с использованием «молекулярных маячков»

Лumepamypa.

1. Guatelli J.C., Whitfield K.M., Kwoh D.Y., et al., wIsothermal, in vitro amplification of nucleic acids by multienzyme reaction modeled after retroviral replication» Proc. Natl. Acad. Sci., 1990, V.87.. P.1874-1878
2. Kievits T., van Gemen B., et al., "NASBA isotermal enzymatic in vitro nucleic acid amplification optimized fort he diagnosis of HIV-1 detection» J.Virol. Method, 1991, V 35, P.273-286.
3. Lcone G., van Schijndel H., et al., «Moleculare beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA* Nucleic Acids Res., 1998.. V.26, P.2150-2155.

4 Mahony JB, Song X, et al., «Evaluation of the NucliSens Basic Kit for detection of Chamydia trachomatis and Neisseria gonomhocac in genital tract specimens using nucleic acid wequence-based amplification of 16S rRNA"J. Clin. Microbiol. 2001., V.39. P. 1429-1435.

