В группе вирусных гепатитов особое место занимает вирусный гепатит C (ВГС), напряженный эпидемиологический потенциал которого поддерживается как высокой частотой хронизации данного заболевания, так и ростом его бессимптомного вирусоносительства [4]. Внедрение в практику здравоохранения иммунофенерментных диагностикомплексов послевдоколоний для первичного скрининга компонентов крови, разработанных на основании рекомбинантных белков (или) синтетических пептидов, кодируемых геном ВГС, позволило снизить риск постреципсизонного заражения данной инфекцией. Вместе с тем, важное диагностическое значение имеет исследование динамики выработки антител к вирусу гепатита C, что дает возможность не только изучить эпидемическую поливалентность ВГС-антител, но и оценить иммунный ответ на разных стадиях заболевания [1, 2, 4, 9]. Однако выявление суммарных антител к ВГС в одной лунке иммуно- плацета позволяет разграничить острое и хроническое течение болезни, прогнозировать ее течение и успех применения противовирусной терапии.

Несмотря на неоценизованность мнений в отношении важности выявления ряда антител к ВГС для принятия рационального лечения и прогнозирования исхода заболевания гепатита C (в частности, антител к NS5) [6, 8], большинство специалистов считают необходимым использование наиболее широкого спектра антител на иммуносорбенте с целью повышения информативности лабораторного исследования, особенно на этапе подтверждения положительных результатов первичного скрининга крови [4, 10]. Вместе с тем следует отметить высокую стоимость препаратов, предназначенных для проведения подтверждающего анализа методом линейного иммуно-блотинга, преимущественно зарубежного производства. В то же время использование ИФА-тест-систем с раздельной иммобилизацией антигенов требует значительного расхода биологического материала (выворотки или плазмы крови человека). Таким образом, создание нового класса диагностических препаратов, способных раздельно детектировать целый спектр интересующих маркеров, с использованием минимального объема биологического материала и совмещающих достоинства ИФА-анализа и иммуно-блотинга в одном формате является актуальным. Новейшие разработки в области биотехнологий свидетельствуют о том, что всем этим требованиям удовлетворяют тест-системы в формате биоочков [7].

Цель работы — разработка и клиническая апробация иммуночипа для серологической диагностики ВГС.

Материалы и методы. Получение рекомбинантных антигенов ВГС. Выбор нуклеотидных последовательностей для клонирования осуществлялся с учетом эпидемиологических особенностей распространения генотипов и субтипов возбудителя ВГС на территории Российской Федерации. Из плазмы крови ВГС-инфицированных пациентов получали клон НК (нуклеарную ДНК), используя набор "РИО-сорб" и "Реверта-L" производства ФГУН Центральный НИИ эпидемиологии Роспотребнадзора (Москва). В соответствии с первичными структурами генов ВГС различные варианты олигонуклеотидных праймеров были синтезированы в ЗАО "СинтеЛ" (Москва). Амплификацию фрагментов генов ВГС (core - 1b, NS3 - 1b, c100p (фрагмент NS4), m - 51 - 1b (фрагмент NS4), NS5 - 1b, core - 3a, NS3 - 3a, m - 51 - 3a (фрагмент NS4) и NS5 - 3a) осуществляли в термокамере "Герик" (ЗАО "НПФ ДНК-технология", Москва). Клонирование амплифицированных фрагментов осуществляли в виде пар повторяющихся последовательностей в векторе рНСV - T7 (ФГУН ЦНИИ эпидемиологии Роспотребнадзора, Москва) согласно методике, описанной ранее [3], с последующей его трансформацией в штамме E. coli BL - 21 (DE3).

Очистку рекомбинантных антигенов осуществляли с помощью аффинной и инообменной хроматографии. Наличие белка во фракциях выявляли с помощью электрофореза в полиакриламидном геле, содержащем гелевый агар. Концентрацию белка определяли по методу Бредфорда [5]. Всего было получено 20 вариантов высокоочищенных рекомбинантных структурных и неструктурированных белков (NS3, NS4, NS5, core).

Анализ иммунореактивности полученных антигенов проводили в сравнении с коммерческими рекомбинантными белками и пептидами (15 вариантов структурных и неструктурных антигенов), при-
меняемыми при конструировании иммуносорбентов тест-систем в формате ИФА и линейного иммуноферментного биотита.

Приготовление иммуносорбента. Рекомбинантные антитела ВГС иммунизировали на поверхности микроскопических слайдов с аллодионным покрытием (CSS-100 Silylated Slides или VALS 25 Vantage производства CEL Associates Inc., США) с помощью робота для контактной печати XactII ("Lab-Next", США), используя специальную капиллярную иглу с внутренним диаметром 0,35 мм. Рабочие концентрации антител готовили в однородном фосфатно-солевом буфере (ФСБ), рН 7,4, содержащем в конечном разведении 0,01% тиамина-20, 2,5% глицерола, 10% диметилсульфоксида ("Sigma", США). Для исключения ошибок при постановке анализа и контроля качества работы иммуночипа в состав иммуносорбента были включены внутренние контрольные: сорбционный буферный раствор, нормальный иммуноглобулин человека и антитела к IgG человека (ООО "ИМТЕК", Москва) в конечном разведении 200 мкг/мл. Каждый из иммунизированных антител и внутреннему контролю соответствовал индивидуальный специальный (пятно) в двух повторах. Сорбцию антител и контролей на поверхности слайдов проводили при комнатной температуре в течение ночи в специальной камере с поддержанием 60% влажности воздуха.

С целью инактивации ненаспособной сорбции антител и улучшения морфологии спотов слайды с иммунизированными ранее белками подготавливали в блокирующий раствор (0,1 М ФСБ рН 7,4, с кахеинат томат, "Sigma", США) в конечной концентрации 0,5% на 1 ч при комнатной температуре с последующим высушиванием в конечном ионотроне теплого воздуха. Приготовленные иммуносорбенты чипов помещали в пластиковые контейнеры по 5 штук, герметично запаивали под вакуумом в фольгированные пакеты с вложенным снегом и хранили в холодильнике при 2-8°С.

Принцип работы иммуночипа и порядок проведения серологического анализа. Принцип работы иммуночипа построен на внепрямом методе выявления специфических антител к возбудителю ВГС с помощью флюоресцентной детекции. Подбор оптимальных условий постановки реакции осуществляется питательным вариантом следующих параметров: времени инкубации на иммуносорбенте исследуемых образцов и рабочих разведениях конъюгатов, температурного режима инкубации, конечного разведения образцов. Сравнительное изучение чувствительности и специфичности разрабатываемого иммуночипа проводили в двух вариантах: на основе двухшагового анализа с использованием антител к IgG и IgM человека, модифицированных TRITC или FITC соответственно, и трехшагового анализа со следующей системой детекции: суммарный конъюгат анти-IgG + анти-IgM человека с биотином — стрептавидин, модифицированный TRITC (FITC). В работе были использованы концентраты конъюгатов производства ООО "ИМТЕК" (Москва). Все этапы инкубации проводили при температуре 37°С, однородную промывку слайдов раствором 0,1 М ФСБ (рН 7,4) с содержанием тиамина-20 в конечной концентрации 0,1% осуществляли после каждой стадии. Перед сканированием слайды одноразно промывали дистилированной водой и высушивали.

Учет и интерпретация результатов анализа на иммуночипе. Обработку результатов серологического анализа на иммуночипе проводили с помощью сканера ScanArray Express ("Perkin Elmer", США) и прилагаемого к нему программного обеспечения, оценивающего интенсивность сигнала флюоресценции соответствующих спотов (в местах локализации антител и внутренних контрольных) и суммарного фона эреза. Для каждого спота рассчитывали коэффициенты (К), представляющие собой отношение абсолютного значения флюоресценции конечного спота (за вычетом суммарного фона вокруг эреза) к фону. Значение критического уровня (cut off) для каждого из антител и контролей устанавливали путем умножения среднего значения К в эрезе с внесенными контрольными отрицательными образцами тест-системы (К-) на 2. Положительным результатом на наличие антител к определенному антителу ВГС в исследуемом образце считали те показатели, при которых средние значения К определялись выше соответствующего критического уровня (cut off).

Образец считали положительным, если средние значения коэффициентов К, соответствующие 2 и более антителам ВГС, превышали или были равны критическому уровню (cut off). Исследуемый образец считали неопределенным (сомнительным) при выявлении положительного сигнала К только для одного из антител. Образец считали отрицательным, если значения К для всех иммунизированных антител были меньше значения критического уровня.

Материал для клинической апробации тест-системы в формате иммуночипа. Первичную оценку чувствительности и специфичности разрабатываемой тест-системы в формате иммуночипа проводили на стандартной панели посырьку крови, содержащих и не содержащих антител к вирусу гепатита С "Стандарт АТ(+/-) ВГС" — ОСО 42-28-310-02, серия 12 производства ЗАО "Медико-биологический Союз" (Новосибирск), аттестованную в ФГУН ГИСК им. Л. А. Тарасевича Роспотребнадзора (Москва).

Чувствительность иммуночипа на клиническом материале была изучена на 200 образцах сырьку крови больных гепатитом С с подтверждённым наличием соматических антител классов G и M в коммерческих ИФА-тест-системах. Дополнительно препарат оценивали на 15 образцах сырыя крови больных гепатитом С, наличие специфических антител в которых или не было подтверждено в конформаторах (дополняющих) тестах, или данные сырыя в данных тестах были положительны только к одному из белков NS3, NS4, NS5 на сене. В опытную группу дополнительно были включены 4 образца зелены плазмы тела человека, содержащие РНК вируса и отрицательные на наличие анти-ВГС, а также 5 образцов плазмы крови от ВГС-инфицированного пациента, которые были получены в разные периоды специфической про-
Дизайн иммуносорбента тест-системы в формате иммуночипа для серологической диагностики ВГС и флюоресцентное изображение результатов иммунореакции для 5 ВГС-положительных образцов с различным спектром антител (№ 1, 3—5, 12) и 7 негативных образцов сыворотки крови (№ 2, 6—11). Характеристика ВГС-положительных образцов: № 1 содержит анти-соге, анти-NS3, анти-NS4; № 3 содержит анти-соге, анти-NS3, анти-NS5; № 4 имеет полный спектр антител к ВГС-положительному контролльному образцу тест-системы (K+); № 5 — анти-соге; № 12 — содержит антитела к соре и NS3. Отрицательный контроль образец тест-системы (K−) — № 11.

типовирусной терапии (образцы исследованы в динамике на наличие РНК вируса и антител к коммерческим тест-системам соответствующего назначения).

Контрольная группа включала 200 образцов сыворотки или плазмы крови человека, в том числе от здоровых доноров (n = 100), от лиц с аутоиммунными заболеваниями (n = 20), больных гепатитами А и В (n = 50) и от пациентов, в биохимических анализах которых выявлено повышенное содержание билирубина и аланинамино трансферазы (n = 30).

Клинический материал получен из клиническо-диагностического отделения Центра молекулярной диагностики ФГУН ЦНИИ эпидемиологии Роспотребнадзора (Москва).

Перечень используемых в работе коммерческих тест-систем. Для первичного скрининга на наличие анти-ВГС в образцах сыворотки (плазмы) человека использовали ИФА-тест-системы для обнаружения суммарных антител классов G и M к вирусу гепатита C в сыворотке (плазме) крови человека: "ИФА-АНТИ-НСВ" (ООО НПО "Диагностические системы", г. Новгород) и набор "Murex HCV-EIA" (версия 4; "Abbot/Murex", Франция).

Для подтверждения положительных результатов первичного скрининга и изучения спектра антител к ВГС использовали следующие диагностические препараты: "ЛИА ВГС" (ООО "НИАРМЕДИК ПЛЮС", Москва) — набор реактов для подтверждения наличия антител класса G к вирусу гепатита C в сыворотке и плазме крови человека (линейный иммуноблот) с иммобилизованными дискретно на мембране антигенами из области соре (2 полипептида — C1 и C2), E2-гипервариабельной области, NS3-спирального региона, NS4A, NS4B, NS5A.

иммуноферментные тест-системы для раздельного выявления и подтверждения присутствия антител классов IgG и IgM к вирусу гепатита C (соре, NS3, NS4, NS5): "ИФА-АНТИ-НСВ-СПЕКТР-ГМ", комплект 1 (ООО НПО "Диагностические системы", г. Новгород) и "Рекомбинант анти-ВГС-стрип-Г/М" (ЗАО "Вектор-Бест", Новосибирск).

Выявление РНК ВГС из плазмы крови человека проводили с использованием коммерческой ПЦР-тест-системы с учетом результатов в режиме реального времени "АмпиСенс-НСВ-FRT" (ФГУН ЦНИИ эпидемиологии Роспотребнадзора, Москва).

Результаты и обсуждение. Необходимым условием для разработки любой диагностической тест-системы является подбор антител для иммобилизации их на твердой фазе. Данные антителы должны быть высокоочищенными и содержать иммунодомinantные эпитопы, позволяющие максимально сократить количество ложноотрицательных реакций и повысить чувствительность теста особенно при анализе ВГС-положительных образцов, полученных на ранней стадии инфицирования.

С целью отбора наиболее иммуногенных ВГС-белков при конструировании иммуночипа нам была изучена их иммунореактивность с образцами сывороток крови, содержащими различный спектр антител к ВГС в различных концентрациях. Оценку специфичности проводили на панели образцов сыворотки (плазмы) крови человека, не содержащих антитела к данному возбудителю. Для каждого иммобилизованного в рабочем разведении антигена
Дизайн иммуносорбента тест-системы в формате иммуночипа для серологической диагностики ВГС и флюоресцентное изображение результатов иммуноаналитики для 5 ВГС-положительных образцов с различным спектром антител (№ 1, 3—5, 12) и 7 негативных образцов сывороток крови (№ 2, 6—11). Характеристика ВГС-положительных образцов: № 1 содержит анти-сур, анти-NS3, анти-NS4; № 3 содержит анти-сур, анти-NS3, анти-NS5; № 4 имеет позитивный спектр антител к ВГС-положительному контролльному образцу тест-системы (K+), № 5 — анти-сур; № 12 — содержит антитела к суре и NS3. Отрицательный контрольный образец тест-системы (K—) — № 11.

Тивовирусной терапии (образцы исследованы в динамике на наличие РНК вируса и антител в коммерческих тест-системах соответствующего назначения).

Контрольная группа включала 200 образцов сыворотки или плазмы крови человека, в том числе от здоровых доноров (n = 100), от лиц с аутоиммунными заболеваниями (n = 20), больных гепатитами A и B (n = 50) и от пациентов, в биохимических анализах которых выявлено повышенное содержание билирубина и аланинаминоацилтрансферазы (n = 30).

Клинический материал получен из клиники-диагностического отделения Центра молекулярной диагностики ФГУН ЦНИИ эпидемиологии Роспотребнадзора (Москва).

Перечень используемых в работе коммерческих тест-систем. Для первичного скрининга на наличие анти-ВГС в образцах сывороток и плазмы крови человека использовали ИФА-тест-системы для обнаружения суммарных антител классов G и M к вирусу гепатита C в сыворотке (пластмассовые флаконы) человека: "ИФА-АНТИ-НСВ" (ООО НПО "Диагностические системы", Новогрод) и набор "Murex HCV-ELISA" (версия 4; "Abbott/Murex", Франция).

Для подтверждения положительных результатов первичного скрининга и изучения спектра антител к ВГС использовали следующие диагностические препараты:

- "ЛИА БГС" (ООО "НИАРМЕДИК ПЛЮС", Москва) — набор реагентов для подтверждения наличия антител класса С к вирусну гепатита С в сыворотке и плазме крови человека (линейный иммуноблот) с иммобилизованными дискретно на мембране антигенами из области суре (2 полипептида — C1 и 2), E2-гипервариабельной области, NS3-спирального региона, NS4A, NS4B, NS5A; "ИФА-АНТИ-НСВ" (ООО НПО "Диагностические системы", Новогрод) и набор "Murex HCV-ELISA" (версия 4; "Abbott/Murex", Франция).
определяли отношения средних коэффициентов (К) анти-ВГС-положительных низкотитражных образцов (n = 10) к средним коэффициентам К сыроотка крови, не содержащих антитела к ВГС (n = 10). Максимальные отношения сывороток крови с высокой имунореактивностью были в КП положительных сывороток панели ОСО 42-28-310-02П (№ 1–16) с оценкой специфичности (постановка сыроотка крови человека, не содержащих антитела к вирусу гепатита С — № 17–24 в составе этой же панели). КП были рассчитаны для каждого иммунообъекта, как коэффициент отношение средних коэффициентов К к соответствующему значению критического уровня (cut off).

Установлено, что комбинации антигенов производства ЦНИИ эпидемиологии (всего 4 группы: 1-я — core-1b + core-3a, 2-я — NS3-1b + NS3-3a, 3-я — c100p + m-51-1b + m-51-3a, 4-я — NS5-1b + NS5-3a), иммунообъекты индивидуально, обеспечивали самые минимальные значения чувствительности и специфичности разработываемого теста. Очевидно, что каждая комбинация белков ВГС, ассоциированная на поверхности активированных сырооток, может рассматриваться как единый целостный антиген, обладающий уникальными иммунологическими характеристиками.

Следует отметить, что некоторые повышение КП анти-ВГС-положительных образцов сыроотка крови человека без снижения специфичности наблюдалось при трехшаговой постановке серологического анализа на чип. Такая постановка включала 60-минутную инкубацию на иммуносорбенте исследуемых образцов в конечном разведении 1:2 и последовательные 30-минутные экспозиции со смесью антивиральных конъюгатов анти-IgG и анти-IgM человека, меченных биотином и рекомбинантным стрептавидином, модифицированным TRITC (FITC). С целью оптимизации условий постановки реакции в дальнейшей работе было использовано двухшаговая система проведения анализа на иммуночипе (60-минутная инкубация с исследуемыми образцами и последующей 30-минутной экспозицией с рабочим разведением антивирусного конъюгата). При такой постановке анализ иммуночипа продемонстрировал 100% чувствительность и специфичность на стандартной панели сыроотка ОСО 42-28-310-02П. КП положительных образцов данной панели (№ 1–16) приведены в табл. 1 в сравнении с результатами тестирования в "ЛИА-ВГС".

Диагностическая эффективность разработанного препарата была изучена на клиническом материале. Чувствительность иммуночипа на 200 образцах сыроотка крови человека, содержащих антитела к ВГС (по данным тестирования в скрининговых ИФА-тест-системах), составила 100%. В то же время спектр выявляемых антител был различным. Наиболее часто наблюдалось полное суммарное охватывание с антителами core, NS3, NS4, NS5 (67%). Специфические антитела к любым двум антителам ВГС определяли в 27% образцов данной группы. Антитела к одному из белков ВГС, иммунообъектов на слайде чипа, были выявлены для 12 (6%) образцов. В данном случае результат мультиплексного исследования интерпретирован как неопределенный или сомнительный.

Учитывая, что коммерческие тест-системы содержат в составе иммуносорбента антителы (поли- пептиды) и/или синтетические пептидные генерации ВГС, которые различаются по своей иммуногенности от вирусспецифических антител, была изучена

Таблица 1

Результаты исследования положительных сырооток стандартной панели, содержащих и не содержащих антитела к ВГС ОСО 42-28-310-02П (серия 12), в иммуночипе и линейном блоке "ЛИА-ВГС"

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Субтип по паспорту</th>
<th>Результат в "ЛИА-ВГС"</th>
<th>КП в иммуночипе</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>1</td>
<td>1b</td>
<td>2+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>1+</td>
<td>±</td>
</tr>
<tr>
<td>3</td>
<td>1b</td>
<td>2+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>1b</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>1b</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>1b</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>7</td>
<td>1b</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>1b</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>3a</td>
<td>2+</td>
<td>±</td>
</tr>
<tr>
<td>10</td>
<td>3a</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>11</td>
<td>1b</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>12</td>
<td>1b (2a или 2c)</td>
<td>2+</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>1b (2a или 2c)</td>
<td>2+</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>1b</td>
<td>2+</td>
<td>±</td>
</tr>
<tr>
<td>15</td>
<td>1b</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>16</td>
<td>1b</td>
<td>+</td>
<td>±</td>
</tr>
</tbody>
</table>

Причение. КП — коэффициент позитивности в иммуночипе. — отношение среднего значения коэффициента К для конкретного антитела к соответствующему значению cut off, темным цветом отмечены КП > 1 (положительный ответ в иммуночипе к определенному антителу).
корреляция результатов анализа с анти-ВГС-положительными сыворотками \(n = 100 \) в подтверждающих тестах и иммунокки. Совпадение по спектру выявляемых антител в биоочке и подтверждающих ИФА-тест-системах было достаточно высоким: 72% по сравнению с "ДС-ИФА-анти-НСУ-СПЕКТР-ГМ" и 67% с "Рекомбинантный антив-ВГС спектр Г/М". Преимущество по выявляемому спектру антител в иммунокки по сравнению с результатами тестирования с "ДС-ИФА-анти-НСУ-СПЕКТР-ГМ" и "Рекомбинантный антив-ВГС спектр Г/М" было выше в 28 и 21% образцах соответственно.

Следует отметить, что правила интерпретации результатов иммунологических тест-систем различными производителями, выявляющими спектр антител, отличаются. По этой причине при использовании анти-ВГС-позитивных сывороток крови (по данным первичного скрининга) в иммунокки и верификационных ИФА-тестах количество подтверждённых и сомнительных образцов варьировало (табл. 2).

Особый интерес представляют 4 образца плазмы крови человека, сопутствующие РНК ВГС и отрицательные на наличие специфических иммуноглобулинов классов Г и М к данному вирусу (по результатам тестирования в коммерческих скрининговых ИФА-тест-системах). При постановке анализ в форме иммунокки во всех образцах были выявлены специфические антитела к ВГС: соре в 1 образце, НС3 в 2 образцах и НС4 в 1 образце. Дальнейшее изучение данных образцов в биоочке "ЛИА-ВГС" показало, что в 2 из 4 были отмечены слабые специфические полосы на уровне 0,5 ±cut off для НС3 (образец 1) и НС4 (образец 1), результаты исключения в соответствии с инструкцией по применению к тест-системе интерпретируются как отрицательные. В то же время при постановке данных образцов в иммунокки в соответствии с нашей интерпретацией результатов анализа детектированы сомнительные результаты.

Таблица 2

Результаты тестирования анти-ВГС-положительных образов в иммунокки и коммерческих подтверждающих ИФА-тест-систе

<table>
<thead>
<tr>
<th>Тест-система</th>
<th>Количество подтверждённых положительных образцов</th>
<th>Количество неопределённых результатов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Иммунокки</td>
<td>КП > cut off для 2 антителов и более</td>
<td>КП > cut off для 1 антитела</td>
</tr>
<tr>
<td>"ИФА-АНТИ-НСУ-СПЕКТР-ГМ"</td>
<td>92/100</td>
<td>8/100</td>
</tr>
<tr>
<td>"Рекомбинантный антив-ВГС-стрин-Г/М"</td>
<td>90/100</td>
<td>10/100</td>
</tr>
</tbody>
</table>

Примечание. В скобках указан процент положительных результатов.

Из таблицы видно, что при использовании коммерческих ИФА-тест-системы возможны сбои в интерпретации результатов. Более того, результаты могут отличаться даже при использовании одинаковых тест-систем.

Анализ данных показал, что более точными являются результаты, полученные с помощью коммерческих ИФА-тест-систем, в которых использовались специфические антитела к ВГС. Однако, при использовании коммерческих ИФА-тест-систем необходимо учитывать индивидуальные особенности пациента и проводить дополнительные исследования для подтверждения результата.

Следует отметить, что использование коммерческих ИФА-тест-систем является актуальным при диагностике ВГС, так как позволяет быстро и надёжно определить наличие антител к ВГС в крови пациента. Однако, при необходимости более точной диагностики могут быть использованы специфические ИФА-тесты, которые позволяют определить наличие антигенов, специфичных для ВГС.

Таким образом, использование коммерческих ИФА-тест-систем является эффективным инструментом при диагностике ВГС, однако при необходимости более точной диагностики могут быть использованы специфические ИФА-тесты, позволяющие определить наличие антигенов, специфичных для ВГС.
образца в зависимости от используемой тест-системы). Таким образом, технология с применением биочипа позволяет значительно снизить стоимость серологического анализа.

ЛИТЕРАТУРА

2. Круглов И. В. Особенности гуморального иммунного ответа при гепатитах А, В, С: Дис. ... д-ра биол. наук. — М., 2006.

DESIGN OF AN IMMUNOCCHIP FOR SEPARATE DETECTION OF HEPATITIS C VIRUS ANTIBODIES.

A test kit as an immunochip designed for the diagnosis of hepatic C virus (HCV) has a high sensitivity and specificity. Recombinant HCV antigens were separately immobilized on the activated slides together with internal controls. Serum test results were red by ScanArray Express. K-factor and corresponding value of cut-off were calculated for each antigen and internal controls. Comparative evaluation of the sensitivity and specificity of the immunochip was carried out by commercial ELISA test kits and linear blotting analyses on 448 blood samples containing and free from NCV antibodies.