Caliciviral infection

A.A.Mukhina, G.A.Shipulin, A.T.Podkolzin, V.V.Maleev

Central Research Institute of Epidemiology, Ministry of Public Health of the Russian Federation, Moscow

The present review of literature generalizes recent data on taxonomy and classification of caliciviruses. The most complete characteristic of epidemiology and clinical symptoms of caliciviral infection is given. Major works related to the immunological response and problems of resistance to this infection are described. The basic principles of diagnosing noroviral and sapoviral infections are touched upon.

Key words: caliciviral infection, gastroenteritis, pediatrics, epidemiology

Эпидемиология и классификация

Семейство Caliciviridae объединяет большую группу сходных по морфологии и отличных по антителенным свойствам РНК-позитивных однонитевых вирусов. Диаметр вирусных частиц составляет 27 нм. При изучении в электронном микроскопе на поверхности вирусов заметны 32 углубления, по форме напоминающих чашечку, а по форме вирусные частицы получили название калицивирусов (от лат. Calyx – чашка).

История изучения калицивирусов началась в 1972 г., когда во время изучения вспышек остrego гастроэнтерита, произошедшей в 1968 г. в г. Норфолк (США), был обнаружен новый возбудитель, названный Норфолк-вирусом. Норфолк-вирус и сходные с ним вирусные агенты, вызывающие массовые заболевания острым гастроэнтеритом, были объединены по характерным морфологическим признакам в семействе Caliciviridae.

В 1979 г. кафедрой вирусологии и генетики ЛЧНИИЗ Министерства здравоохранения РФ под руководством Мухина Анны Александровны, аспирант научно-производственной лаборатории, был разработан и проведен препарат для диагностики инфекционных заболеваний человека и животных.

Адрес: 111123, Москва, ул. Новогиреевская, 3А
Телефон: (095) 304-2261
Статья поступила 20.02.2004 г., принята к печати 20.05.2004 г.

Для корреспонденции:
Мухина Анна Александровна, аспирант научно-производственной лаборатории по разработке и производству препаратов для диагностики инфекционных заболеваний человека и животных ЛЧНИИЗ Министерства здравоохранения РФ

Все перечисленные работы и исследования выполнялись в рамках научно-исследовательских работ, финансируемых Министерством здравоохранения РФ.

For the corresponding author:
Mukhina Anna Aleksandrovna, a postgraduate student in the laboratory for the development and production of preparations for the diagnosis of infectious diseases of human and animal LCHNIIZ Ministry of Health of the Russian Federation

Address: 111123, Moscow, Novogireevskaya St., 3A
Phone: (095) 304-2261
The article was submitted 20.02.2004, accepted for publication 20.05.2004.

Dedicated for correspondence:
Mukhina Anna Aleksandrovna, a postgraduate student in the laboratory for the development and production of preparations for the diagnosis of infectious diseases of human and animal LCHNIIZ Ministry of Health of the Russian Federation.

Address: 111123, Moscow, Novogireevskaya St., 3A
Phone: (095) 304-2261
The article was submitted 20.02.2004, accepted for publication 20.05.2004.
Калицивирусная инфекция

В 2000 г. принята современная классификация норовирусов, в основе которой лежит филогенетический анализ участка гена, кодирующего белок капсида размером 283 п.о. и аминокислотной последовательности размером 94 аминокислот (ак.), соответствующей данной области гена. Результаты, полученные при филогенетическом анализе наиболее варирующей области ORF2 размером 283 п.о. (94 ак.) и полноразмерной последовательности ORF2 размером 1725 п.о. (575 ак.) 38 изолятов норовирусов, были идентичны [1, 3]. В связи с этим для отнесения вновь выявленных изолятов к тому или иному генотипу достаточно проанализировать небольшую область вирусного гена.

В соответствии с предложенной классификацией, норовирусы разделяются на 3 генотипа, которые объединяют многочисленные клоновые вирусы (рис. 1). Первый генотип состоит из 7 клонов (G1/G1/7), второй генотип — из 8 клонов (GII/1 — GII/8), а третий генотип — из 2 клонов. В отличие от норовирусов генотипов 1 и 2, патогенными для человека, норовирусы генотипа 3 вызывают заболевания только у крупного рогатого скота и характеризуются меньшей варируемостью гена [5]. Вирусы генотипа 1 обнаружены у людей, генотип 2 — у людей и свиней. Не давно был выделен норовирус мышей (Murine Norovirus-1) и норовирус человека Alphatron/1998/NL, которые пока не классифицированы [3, 6].

Кроме 3 генотипов норовирусов, Т.Аndo et al. выделяют еще 4 серотипа (обозначаются UK1—UK4). Эти данные по серотипированию были получены с использованием твердофазной иммунной электононной микроскопии. В настоящий момент нет данных о соответствии между генетическим и антигенным разнообразием норовирусов [3, 7].

Саповирусы являются вторым патогенным для человека родом семейства Caliciviridae и характеризуются более высокой консервативностью гена по сравнению с норовирусами. Аминокислотные последовательности полимеразы и белка капсиды саповирусов различаются на 56 п.о., соответственно, тогда как аналогичные показатели для норовирусов равны 62 и 42%. Согласно последней классификации саповирусов, основанной на филогенетическом анализе нескольких участков гена, выделяют 3 генотипа саповирусов [8]. Только генотипы 1 и 2 саповирусов патогены для человека. Генотип 3 саповирусов (porcine enteric calicivirus — PEC) поражает желудочно-кишечный тракт свиней и в отличие от других сапо- и норовирусов способен репродуцироваться в культурах клеток in vitro (см. рис. 1) [9].

Существует гипотеза о способности саповирусов об разовывать рекомбинанты, но данных, подтверждающих это предположение, пока недостаточно [10].

Рис. 1. Классификация калицивирусов. Филогенетическое дерево построено по участку 1530 п.о. гена, кодирующего белок капсида (область 862–2392 п.о. Desert Shield virus) по алгоритму neighbor-joining c использованием Kimura 2 parameter, с помощью программ Vector NTI 6.0 и Megi 2.0.

Норовирусы (кроме крупного рогатого скота) генотипа 1: AF097171 (Newbury agent), AJ011099 (Jena virus).

Норовирусы мышей: AF092025 (Murine Norovirus-1).

AF182760 (PEC/Cowden).

Сведения, накопленные за последние 20 лет, показали, что калицивирусная инфекция — широко и повсеместно распространенное заболевание, поражающее преимуще ственно детское население. Калицивирусная инфекция выявлена во всех странах мира, где проводились исследования: США [11], Великобритании [1], Японии [10, 12], России [13], Кении [12], Нидерландах [14], Франции [15], Швеции [16], Китая [17] и др.

Возраст. Серологические исследования свидетельствуют о высокой заболеваемости калицивирусной инфекцией....
во всех возрастных группах, при этом первоначальный контакт с возбудителем происходит в течение первых лет и даже первых месяцев жизни ребенка. Заболеваемость калицивириурезий зависит от экономического уровня развития страны и социальных факторов. Так, в США в группе детей первых 5 лет жизни антитела к вирусу Норфолк были обнаружены менее, чем у 20% обследованных, а в группе детей старшего возраста (11–15 лет) антитела встречались уже у 65%. Для сравнения, у жителей Бангладеш и Эквадора частота выявления противовирусных антител была значительно выше и достигала 75–100% у детей первых 5 лет жизни. Напротив, в одном из изолированных поселений индейцев свидетельствовало пе- ренесенной норовирусной инфекции не было ни у одного человека [18]. По данным S.Nakata et al., в Кении уровень сероконверсии к норовирусам генотипов 1 и 2 был неоди- наков: к возрасту 2 года антител к генотипам 1 и 2 появи- лись приблизительно у 50% населения и в случае инфици- рования норовирусами генотипа 1 сохранялись на уровнях 50–70% в течение всей жизни, тогда как при инфициро- вании норовирусами генотипа 2 к 12–19 годам антитела обнаруживались уже у 90–100% населения и оставались на стабильном высоком уровне (~90%) в последующие годы [12]. В результате серологического исследования, проведенного S.Nakata et al., было показано, что эпидемиоло- гия сапфитов и норовирусной инфекции генотипа 2 похожа: к 2–5 годам сапфирным гастроэнтеритам переходят 70–80% населения, и число серозаменяющих лиц сохраня- ется высоким (70–90%) во всех возрастных группах [12].

В Китае наблюдается несколько иная картина: при рожде- нии 94–99% детей имеют антител к норовирусам гено- типов 1 и 2, к 1–7 месяцам жизни составляют 36–41%, в течение последующих 5–6 лет происходит активная иммунизация детей, и к 7 го- дам антител к генотипам 1 и 2 калицивириурезий обнару- живаются уже у 100% детей [17].

Уровень заболеваемости калицивириурезий гастроэнте- ритами в разных возрастных группах населения неодина- ков. Норовирусным гастроэнтеритом чаще болеют дети от 0 до 11 лет (до 80% всех случаев) и взрослые старше 64 лет (13%). У людей среднего возраста норовирусный гастроэнтерит встречается достаточно редко. Сапфирные инфекции поражают детей младшего возраста (19% всех случаев за- регистрированы у детей первых 6 месяцев жизни), реже встре- чается у детей 1–11 лет (5–9%) и у людей старшего воз- раста (более 64 лет – 3%). Ни у кого из обследованных в возрасте 12–64 лет сапфирная инфекция не обнару- жена [14]. Учитывая данные о 90–100% серопозитивности взрослого населения и значительно меньшем разнообра- зии сапфирных (4 кластера по сравнению с 7 кластерами генотипа 1 и 8 кластерами генотипа 2 норовирусов), мож- но предположить наличие более эффективной иммунной защиты от сапфирных, нежели от норовирусов [12].

Примечание во внимание утверждение об отсутствии дли- тельного пролонгированного иммунитета при норовирусной ин- фекции, можно допустить, что число взрослых, которые инфицируются норовирусами, отличается от такового среди детей [19, 20]. Причинами меньшей зарегистриро- ванной заболеваемости взрослого населения могут быть 1) большее число бессимптомных форм, что обусловлено зрелостью иммунной системы; 2) большие число легких форм заболевания с исчезновением всех симптомов в течение 1–2 дней и соответственно меньшей обращаемостью за медицинской помощью.

Восприимчивость. Установлено существование лиц, невосприимчивых к норовирусной инфекции [21]. В экспе- рименте у 9 (17,6%) из 51 инфицированного вирусом Нор- фолк (генотип 1) клинические проявления заболевания от- сутствовали, не изменялся уровень гуморальных антител к норовирусу и вирусные маркеры (РНК методом полиме- ранной цепной реакции и поверхностный белок методом иммуноферментного анализа) не обнаруживались в фека- лиях. У 13 (30,9%) из 42 заболевших наблюдалась бессимп- томная форма инфекции (повышение уровня антител к норовирусу на фоне полного здоровья). И только у 29 (58,8%) из 51 развился острый норовирусный гастроэнте- рит. Позже высказывался гипотеза о связи между реци- стентностью к норовирусам и АВО-группами крови [22, 23]. Так, наличие антигена В в фенотипах B0, BB и AB (III и IV группа крови) достоверно снижает риск заболевания норовирусным гастроэнтеритом генотипа 1; невосприим- чивы к инфекции оказались 100% людей с фенотипом AB и 40% – с фенотипом B0, BB; инфекция протекала в стер- той форме у остальных 60% обследованных с III группой крови [23]. Аналогичные данные были получены во время вспышки острого гастроэнтерита, произошедшей в бри- танских военных частях, дислоцированных в Афганистане [22, 24].

Недавно работы по изучению взаимодействия норови- русов генотипа 1 с системой групповых антигенов АВН по- лучили продолжение [25]. Оказалось, что вирусоподобные частицы связываются с клетками только людей секретор- ного типа (Se+)(на клетках и в жидкостях организма, которые обнаруживаются генотипы антигены А, В и Н). Ген FUT2 кодирует белок α-фукозилтрансферазу, кото- рый, участвует в реакции модификации, приводит к образо- зованию антигена Н типа 1. Рецептор Н типа 1 является преобразователем групповых антигенов системы АВО и Lewis, представленных на поверхности эпителиоцитов и эритроцитов.

Оказалось, что in vitro вирус Норфолк связывается с ан- тигеном Н типа 1. Среди европейского населения 20% явля- ются гомозиготными несущими резистентной к инакти- вирующей мутации G428A в гене FUT2, и эпителиальные клетки таких людей не имеют антигена Н типа 1. Следова- тельно, такие лица (некомплексы типа (Se−)) резистентны к норовирусной инфекции [25].

Данная гипотеза получила экспериментальное под- тверждение. При заражении добройовелов было установле- но, что в 100% случаев пациенты несекреторного типа (Se−) оставались невосприимчивыми к вирусу Норфолк (генотип 1) даже при введении максимальных инфирующих доз вируса. Но был обнаружен некоторый парадокс: у большинства резистентных к вирусу Норфолк Se− обсе- дованных лиц были обнаружены IgG-антитела, свидетель- ствующие о перенесенной ранее норовирусной инфекции. Было высказано предположение, что среди всего разнообра- зия норовирусов существуют изоляты, способные инфи-
цировать людей несекреторного типа и индукцировать появление антител, вступающих в перекрестные взаимодействия с вирусом Норфолк [25].

Исследования P.Huang et al. подтверждают предположение о неоднородности восприимчивости к норовирусной инфекции [26]. При изучении взаимодействий in vitro нек- скольких норовирусов генотипов 1 и 2 с антителами систем ABO, Lewis и Se в слюне было обнаружено, что вирусы, принадлежащие к одному генотипу, связываются с различными групповыми антителами. Так, вирусы генотипа 2 Grimbsy (кластер 4) и Hillington (кластер 5) поражают лиц секреторного типа, а норовирус генотипа 2 Idaho falls (кластер 6) инфицирует только людей несекреторного типа. При этом норовирус Grimbsy связывается с антителами слюны всех лиц секреторного типа, тогда как норовирус Hillington взаимодействует только с слюной лиц, имеющих антителы A и B. В работе P.Huang et al. также было продемонстрировано избирательное взаимодействие норовирусов генотипа 1 со слюной всех представителей секреторного типа, за исключением лиц, имеющих антителы B (III и IV группа крови), что является подтверждением клинических наблюдений [22-24] и экспериментальных работ in vivo, проведенных L.Lindesmith et al. [25].

Таким образом, справедливо утверждение, что все изоля- ты норовирусов могут по-разному связываться с групповыми антителами систем ABO, Lewis. Вероятно, это является причиной доминирования одних изолятов норовирусов над другими: например, норовирусы кластера 4 инфицируют всех индивидуумов секреторного типа, т.е. ~ 80% европейского населения, и поэтому вызывают до 50-90% всех вспышек калицивирусных гастроэнтеритов [26]. И, наоборот, лиц, восприимчивых к норовирусам генотипа 1, несколько меньше (I, II и реже III группа крови), и, вероятно, поэтому норовирусы генотипа 1 примерно в 10 раз реже, чем норовирусы генотипа 2, вызывают острые гастроэнтериты.

Итак, существуют 3 типа реакций, развивающихся у челове́ка при инфицировании норовирусами: 1) генетически обусловленная резистентность к вирусу (описана выше); 2) развитие короткого протективного иммунитета и невосприимчивости к инфекции; 3) восприимчивость, даже при повторных заражениях (рис. 2).

Распространенность. Заболевания калицивирусной природы регистрируются в виде спорадических случаев (характерно для детей), групповых заболеваний и массовых вспышек. Считается, что реальное число спорадических случаев в 300 раз превышает число зарегистрированных. Для сравнения, этот показатель составляет 3 и 10 при сальмонеллезной и кампилобактериозной инфекциях соответственно [27]. Частота определения калицивирусов в фекалиях детей, больных острыми кишечными инфекциями, составляет 6-17% от общего числа заболевших, причем норовирусы генотипа 1 встречаются приблизительно в 10 раз реже норовирусов генотипа 2 [13, 15, 26-30]. У детей сальмонелла, по разным данным, вызывают 3-19% случаев острых кишечных инфекций [9]. У взрослых сальмонелла инфекция встречается крайне редко [4, 9]. По нашим данным норовирусы генотипа 1 были выявлены у 0,6% детей с острыми кишечными инфекциями, норовирусы генотипа 2 – у 20%, сальмонеллы – у 0,4% (данные не опубликованы).

По данным B.Svenngsson et al., у взрослых калицивирус- ный гастроэнтрет составляет не более 3% от общих суммы спорадических случаев острых кишечных инфекций, хотя столь низкая частота встречаемости данного возбудителя может быть связана с низкой чувствительностью лабораторного исследования, используемого в работе, – электронной микроскопии [31]. В исследовании B.Foley et al. частота обнаружения норовирусов генотипа 2 в фекалиях больных в возрасте 40-70 лет равнялась 10,5% (аналогичные данные для детей 3-10 лет), а у пожилых старше 70 лет норовирусы встречались в 4 раза чаще – в 42% случаев [4].

Рис. 2. Модель различных типов взаимодействия с норовирусной инфекцией (на примере норовируса генотипа 1 Norwalk /1968/US) [25].
Калицивириусы вызывают 36–40% вспышек острых кишечных инфекций, или 90% вспышек острых кишечных инфекций небактериальной природы [32–34]. Большинство вспышек связано с норовирусами генотипа 2, реже генотипа 1, а саповирусы вызывают лишь незначительную часть случаев массовой заболеваемости [32, 35, 36].

Не вызывает сомнений доминирование норовирусных генотипа 2 над норовирусами генотипа 1 в 94–98% массовых и спорадических случаев гастроэнтеритов были обнаружены генотипа 2 [30, 37]. Циркулирующие изолятов норовирусов отличаются гетерогенностью, но наиболее часто обнаруживаются норовирусы генотипа 2 кластера 4 [26]. Во многих исследованиях выявлены эндемические вирусы, которые преобладают над циркулирующими изолятами других кластеров в данном географическом регионе [4, 30, 37]. При многолетнем изучении молекулярной эпидемиологии норовирусов отмечена смена доминирующих изолятов [10].

Сезонность. Большинство исследователей в разных странах мира отмечают выраженную сезонность калицивириусной инфекции: число ее случаев резко возрастает в осенне-зимнее время и достигает максимума в сентябре [36]. Подъем заболеваемости норовирусной инфекцией начинается на 1-2 месяце раньше, чем ротавирусной инфекции, а в сентябре-октябре, а рост числа заболеваний саповирусной инфекции немного запаздывает и отмечается только к февралю [32, 39]. Летом регистрируются единичные эпизоды калицивириусной инфекции.

Тем не менее большинство вспышек и массовых заболеваний происходит в течение всего года, без сезонных колебаний. Исключение составляют лишь вспышки в больницах, увеличение числа которых происходит одновременно с ростом спорадической заболеваемости и становится максимальным в период с ноября по апрель [32, 33].

Пути передачи инфекции. Сведения о животных как источниках заражения людей отсутствуют. Кроме того, до сих пор не удается воспроизвести калицивириусную инфекцию в экспериментальных условиях на животных.

Калицивириусная инфекция высококонтагиозная заболевание с фекально-оральным механизмом передачи. Инфекция распространяется контактно-бытовым, пищевым и водным путем. При развитии вспышек в различных лечебно-профилактических учреждениях инфекция передается контактно-бытовым путем в 85% случаев [33]. При массовом заражении людей в местах общественного питания, гостищах и во время развлекательных мероприятий доминирует пищевой путь инфицирования, а последующим распространением инфекция контактно-бытовым путем и развитием вторичных очагов. Для пищевого пути инфекции не характерны сезонные колебания. По данным Американской системы надзора США FoodNet, 56% пищевых вспышек острых кишечных инфекций было вызвано калицивириусами. Следует предположить, что часть вспышек кишечных инфекций неустановленной этиологии, протекающих по типу пищевых токсикоинфекций, может быть бактериальной природой, как считалось ранее, а именно калицивириусную [40].

Калицивириусы обнаруживают в многочисленных продуктах питания: морепродуктах, свежих ягодах и овощах, птице, мясе, хлебобулочных изделиях [11, 33]. Считается, что массовые заболевания норовирусным гастроэнтеритом ассоциированы с морепродуктами (чаще устрицами), которые загрязняются сточными водами при нарушении условий выращивания и транспортировки, а затем не проходят должную термическую обработку [11, 39, 41, 42]. Кроме зараженных продуктов, источником инфекции часто являются сотрудники мест общественного питания, участвующие в приготовлении пищи. Более одной трети пищевых вспышек связано с инфицированным персоналом [33].

Несмотря на длительное (1–2 мес) выделение вируса с фекалиями, в Великобритании сотрудникам мест общественного питания разрешается возвращаться на работу после перенесенного норовирусного гастроэнтерита уже через 48 ч с момента прекращения диареи [14, 21]. Необходимо отметить, что при этом не требуется прохождение каких-либо лабораторных исследований [27].

Не менее актуальным является водный путь передачи калицивириусной инфекции. Неоднократно описаны вспышки, вызванные загрязнением питьевой воды канализационными стоками [43, 44]. В связи с высокой устойчивостью норовирусов к действию дезинфектантов и плесневой инфицирующей дозой происходит накопление вируса в источниках питьевой воды (например, колодцах), что приводит к возникновению вспышечной заболеваемости.

Одним из факторов, способствующих передаче калицивириусной инфекции контактно-бытовым путем, является мелкодисперсный аэрозоль ротных масс, который либо, рассыпаясь, попадает в верхние дыхательные пути и проглатывается вместе со слюной, либо через плохо вымытые руки попадает в пищу или передается контактно-бытовым путем [36, 45]. Было подсчитано, что при раде в окружающую среду выделяется 30 млн. вирусных частиц, при этом инфицирующая доза составляет всего 10–100 вирусных частиц, поэтому вероятность аэрогенного распространения инфекции высока, особенно при большом скоплении людей, принимающих пищу (в местах общественного питания) [46]. Диссеминация вирусов происходит также через kontaminirovanые предметы, на которых вирус остается жизнеспособным в течение длительного времени [47]. Это является причиной частого возникновения вспышечных случаев инфекции, поддерживая тем самым волнобразную заболеваемость в очаге.

Каливирусная инфекция

Афганистане в 2002 г. среди британских военных также была зарегистрирована вспышка норовирусного гастроэнтерита, отличавшаяся тяжелым течением [24].

Во время вспышек в больницах, домах престарелых и других лечебно-профилактических учреждениях заболевают до 80% всех находящихся в стационаре, из них 45-60% пациентов и 25-40% обслуживающего персонала [35]. Там же фиксируются и самые многочисленные вспышки (более 50 человек).

Вспышки каливирусной инфекции охватывают от 2 до 1024 человек, в половине случаев число пострадавших не превышает 9-30 [33, 39]. Их длительность колеблется от нескольких дней до нескольких месяцев. Наиболее продолжительные (6-9 дней) эпизоды зафиксированы в больницах, школах и различных лечебно-профилактических учреждениях, более короткие (2-5 дня) — при инфицировании в местах общественного питания и в гостицах [33].

Клиническая картина

Патоморфология и патогенез. Изучение патологических проявлений инфекции проводилось только в экспериментах по заражению добровольцев. У всех инфицированных вирусом Норфолк (генотип 1) или Гавайи (генотип 2) были описаны кратковременные воспалительные изменения в слизистых оболочках верхних отделов тонкой кишки, характерные для острых энтеритов, сопровождающиеся атрофией ворсинок. Состояние слизистых оболочек желудка и прямой кишки оставалось без патологических изменений. Патоморфологическая картина при норовирусном гастроэнтерите характеризовалась утолщением и укорочением отечных ворсинок, инфильтрацией монокулярей собственной пластинки [21]. Кроме того, отмечалось снижение ферментативной активности клеток щеточной каймы и развитие вторичной дисахаридазной недостаточности, при этом уровень аденилатциклазы в слизистых тонкой кишки не изменялся [50].

Таким образом, гистологические изменения в слизистой оболочке тонкой кишки при гастроэнтерите, вызванном норовирусом, очень сходны с картиной ротавирусного гастроэнтерита, но отличия состоят в том, что при норовирусной инфекции в апикальном отделе эпителиоцитов отмечается вакуолизация цитоплазмы и увеличивается глубина крпита, чего не наблюдается при ротавирусном гастроэнтерите [51]. Механизм патогенеза двух заболеваний, по-видимому, также имеет общие черты — нарушается всасывание дисахаридов, лактозы, что приводит к появлению водянистой диареи.

Иммунитет. В настоящий момент нет животных моделей норовирусной инфекции, и, кроме этого, до сих пор не удается культивировать каливирус. Поэтому большинство работ, посвященных иммунной защите при норовирусной инфекции, основано на экспериментальных моделях на инфицировании добровольцев и изучении взаимодействий вирусоподобных частиц с сыворотками пациентов. В связи с этим большинство вопросов иммунной защиты при норовирусной инфекции остается открытым.

Приобретенный иммунитет. Нет однозначных данных о том, как долго сохраняется защитный иммунитет после перенесенной норовирусной инфекции. В экспериментах по инфицированию добровольцев показано, что иммунитет от повторного заболевания, вызванного гомологичным вирусом, сохраняется, по разным данным, от 6-14 нед до нескольких месяцев и лет [20, 21]. Считается, что заболевание повторяется при реинфекции гомологичным вирусом спустя 27-42 мес после остого гастроэнтерита [20]. При инфицировании вирусом другого генотипа, например, вирусом Гавайи (генотип 2), у добровольцев, перенесших гастроэнтерит, вызванный вирусом Норфолк (генотип 1), вновь развивается острая инфекция [52].

Таким образом, доказано, что у пациентов, перенесших норовирусный гастроэнтерит, развивается кратковременный постинфекционный иммунитет, защищающий только от гомологического вируса. Существует ли более продолжительная защита от повторной инфекции, не ясно. Также не ясно, как изменяется восприимчивость к повторному заражению людей, перенесших инфекцию: появляется резистентность или, наоборот, повышается риск заболевания [19, 20]. Многочисленные наблюдения показали отсутствие протективных свойств специфических антител у взрослых, тогда как у детей существовала корреляция между наличием антител и защитой от повторного заражения [19, 20, 53]. Данный парадокс, вероятно, объясняется тем, что в детском возрасте контакт с норовирусами происходит настолько часто, что в организме постоянно присутствуют факторы кратковременной иммунной защиты [53]. Вероятно, немаловажную роль в противовирусном иммунитете играют неспецифические факторы местной защиты, обусловленные наличием секреторных IgA антител.

Клиническая симптоматика. При изучении каливирусной инфекции основное внимание всегда уделялось эпидемиологическим и диагностическим аспектам проблемы, и работ, посвященных подробному описанию клинической симптоматики, крайне мало. Считается, что для остrego норовирусного гастроэнтерита характерны только легкие формы заболевания, течение болезни непродолжительное, без осложнений, исход, как правило, благоприятный, и поэтому лечения не требуется [16, 24, 27, 33, 48]. Были даже сформулированы диагностические критерии Каплана, позволяющие с высокой вероятностью предположить, что вспышка острой кишечной инфекции имеет норовирусную природу: большее число заболевших одновременно, инкубационный период 15-50 ч, наличие симптомов остrego гастроэнтерита (чаще рвоты) более чем в 50% случаев, средняя продолжительность заболевания 12-60 ч, отсутствие бактериальных возбудителей в фекалиях больных [54]. Еще один диагностический критерий, предложенный С. Hedberg и M. Osterholm, предполагает больное число возвратных рвот, чем повышение температуры, у больных норовирусной инфекцией [55].
цикулирует великое разнообразие вирусов. Наиболее подробное описание клинической картины калицирувирусной инфекции дано учеными из Нидерландов, проведя большое популяционное исследование спорадических случаев острых кишечных инфекций [14]. Большинство эпизодов норовирусного гастроэнтерита протекает в легкой и среднетяжелой форме, госпитализация требуется редко (330 из 100 000 случаев), заболевание заканчивается самоизлечение, однако возможны смертельные исходы (у пожилых и иммуносупрессированных больных) с частотой 75 на 100 000 заболевших [33]. Заболевание начинается остро, продромального периода нет. Инкубационный период составляет 12–48 ч [16, 24, 27, 33]. В клинической картине заболевания ведущим является синдром гастроэнтерита, который характеризуется развитием диареи (в 87% случаев при норовирусной и в 95% при саповирусной инфекции), рвоты (74% и 60% соответственно), боли в животе и тошноты. Синдром интоксикации выражен умеренно и представлен лихорадочной реакцией у 32% и 43% больных с норовирусной и саповирусной инфекцией соответственно. Обращает внимание то, что у детей первого года жизни в клинической картине норовирусного гастроэнтерита доминирует диарейный синдром (95%), рвота отмечается только у 59%, и температурная реакция сопровождает заболевание всего у 24% больных. У больных саповирусным гастроэнтеритом в данной возрастной группе перечисленные симптомы встречаются чаще, и заболевание протекает несколько тяжелее (диарея – 95%, рвота – 44%, лихорадка – 50%). У взрослых больных норовирусным гастроэнтеритом диарея (91%) практически всегда сопровождается рвотой (82%), выраженными болями в животе, и, в отличие от детей первого года жизни, температурная реакция отмечается практически в 2 раза чаще (в 45% случаев). При саповирусном гастроэнтерите частота обнаружения основных симптомов (диарея, рвота, боли в животе и лихорадка) в разных возрастных группах одинаковая [14, 16]. Продолжительность заболевания определяется сроками нормализации стула – в среднем 5 и 6 дней для норовирусной и саповирусной инфекций соответственно. У части больных норовирусным гастроэнтеритом (~20% детей первого года жизни и ~10% взрослых) диарейный синдром сохраняется до 10 дней и более (в редких случаях диарея продолжается более 28 дней) [14]. Ранее было установлено, что более длительная диарея (в сравнении с ротавирусным гастроэнтеритом) характерна для саповирусной инфекции и может продолжаться в течение 2 нед [12]. Рвота прекращается в первые 1–2 дня заболевания, одновременно с лихорадочной реакцией. Однако у части детей младшего возраста рвота сохраняется в течение недели от начала заболевания. Длительность рвоты уменьшается с увеличением возраста пациентов. В 75% случаев гастроэнтериты характеризуются как среднетяжелые, в остальных – как легкие [14]. Вероятно, разная продолжительность и частота встречаемости симптомов гастроэнтерита обусловлена как индивидуальными факторами (восприимчивость, преморбидный фон и др.), так и генетическим разнообразием циркулирующих норо- и саповирусов. Для подтверждения этой гипотезы и сравнения с приведенной выше клинической характеристикой норовирусной инфекции следует описать клинику вспышки гастроэнтерита, вызванного норовирусом генотипа 2 [16]. Диарейный синдром поражал 72% взрослых и 52% детей, рвота встречалась чаще у детей (81%), чем у взрослых (64%). Дети и взрослые с одинаковой частотой жаловались на тошноту и сильные боли в животе, частота лихорадочных реакций также была практически одинаковой (35 и 44% соответственно). Одна треть заболевших детей перенесли острый гастрит, 14% – острый гастродуоденит. Симптомы заболевания купировались в течение 3–4 дней, после чего наступило выздоровление [16]. Экскреция вирусов происходит с рвотными массами и фекалиями, и максимальное количество вируса выделяется в первые дни болезни и продолжается в течение 2 нед и более от начала заболевания [21]. У 1/4 больных, большую часть из которых составляли дети первого года жизни, наличие норовирусов в фекалиях было зафиксировано в течение 3 нед. Элиминация саповирусов происходила бьстрее, и к 15-му дню от начала заболевания вирус в фекалиях был обнаружен только у 14% пациентов, а уже к концу 3-й недели саповирусы не выявлялись. Длительность экскреции вирусов уменьшалась прямо пропорционально возрасту пациентов и не зависела от тяжести перенесенного заболевания. Вероятно, скорость очищения организма от калицивирусов зависит от типа возбудителя и от эффективности специфической иммунной защиты. Безусловно, длительность экскреции вирусов напрямую зависит от метода детекции вируса. Чем выше чувствительность диагностического метода, тем больше сроки элиминации возбудителя. Мы наблюдаем длительное (более 7 недель) выделение норовирусов генотипа 2 с фекалиями при нормальном самочувствии и оформленном стуле у ребенка 10 мес (данные не опубликованы). Длительная экскреция вируса и большое число (41%) бессимптомных форм заболевания иллюстрируют механизмы, поддерживающие циркуляцию вируса и стабильно высокий уровень спорадической и вспышечной заболеваемости [25]. Диагностика

Постановка диагноза калицивирусного гастроэнтерита по клинической симптоматике, особенно при спорадической заболеваемости, вряд ли представляется возможной ввиду сходства с рядом инфекционных заболеваний и отсутствия патогномоничных признаков. В случае вспышечной заболеваемости рекомендуется придерживаться диагностических критериев Калпана и Гедберга [54, 55]. Но для этиологического подтверждения диагноза необходимы лабораторные исследования.

Лабораторные исследования. Лабораторная диагностика калицивирусной инфекции основывается на нескольких методических подходах, таких как электронная микроскопия, иммуноферментный анализ и молекулярные методы исследования, среди которых оптимальным является полимеразная цепная реакция (ПЦР). Главным недостатком электронной микроскопии является низкая чувствительность исследования. В связи с этим электронная микроскопия практически не используется для рутинной диагностики
калицивирусной инфекции и все реже применяется в качестве эшелонного метода при расследовании вспышек.

Иммуноферментные тест-системы для определения антигенов и антител не позволяют выявлять все разновидности калицивирусов, что связано с высокой вариабельностью поверхностных белков, используемых для создания подобных диагностикумов. Пока остается открытым вопрос о наличии перекрестных серологических реакций между вирусами двух генетических групп или одной генетической группы, но принадлежащих к разным кластерам. Соответствие между генетическим и антигенным разнообразием калицивирусов пока не выявлено [3, 7]. Долгое время считалось, что у норовирусов генотипов 1 и 2, а тем более у саповирусов, отсутствуют общие антителы. Был проведен ряд работ по созданию моноклональных антител, каждое из которых отличалось строгой специфичностью и не обладало способностью вступать в перекрестные реакции с другими вирусами [56]. Однако в 2002 г. N.Kitamoto et al. описали гибридную клеточную линию, полученную на мышах, иммунизированных рег ог норовирусными вирусоподобными частицами. Моноклональные антитела к вирусу Норфокл (генотип 1) и вирусу Кахима (генотип 2), продуцируемым гибридом, обладали перекрестной активностью и узнавали общие антигенные детерминанты на вирусах генотипов 1 и 2 одновременно [7]. Кроме того, были впервые получены моноклональные антитела к саповирусам.

Таким образом, сейчас ведутся активные разработки иммуноферментных тест-систем для одновременной детекции антигенов норовирусов генотипов 1 и 2, а также саповирусов, и уже появились первые сообщения о коммерчески доступных иммуноферментных тестах (Dako Cytomation, Ely, UK) [57]. Практически все данные по эпидемиологии и клинике калицивирусной инфекции были получены с помощью ПЦР — прямого метода молекулярной диагностики, позволяющего выявлять вирусную РНК как в клиническом материале, так и в объектах окружающей среды, включая пищевые продукты. Практически каждый исследователь калицивирусной инфекции стремился предложить собственный формат ПЦР и выбрать специфические праймеры. Это привело к накоплению огромного опыта и материала, позволяющего в скором времени выбрать наилучшие условия ПЦР для стандартизации исследований во всем мире. Следует заметить, что нами также были предложены и успешно опробованы на клиническом материале оригинальные условия ПЦР [13].

Лечение и вакцинопрофилактика

На сегодняшний день специфического лечения норовирусной инфекции нет. В настоящее время проводятся работы по созданию профилактических вакцин против норовирусной инфекции. Пока нет данных о необходимости тотальной вакцинации. Но очевидно, что было бы целесообразным вакцинировать организованные коллективы людей (военные, туристы, контингент домов престарелых и детей домов), вспышки среди которых часты и социально значимы [50]. Проблемами для создания вакцин являются 1) спорные вопросы иммунной защиты, в том числе отсутствие достоверных данных о длительности иммунитета и эффективности местной защиты; 2) генетическое разнообразие норовирусов; 3) отсутствие перекрестного иммунитета при инфицировании разными типами норовирусов; 4) невозможность культивирования калицивирусов; 6) отсутствие животных моделей заболевания.

В настоящее время ведутся работы по созданию пероральных мукозальных вакцин на основе вирусоподобных частиц, которые содержат 180 копий поверхностного белка норовирусов, не реплицируются, но обладают способностью к самосборке. Также вирусоподобные частицы имеют свойство агрегировать, и, вероятно, проникают в пищеварительный тракт. Перечисленные свойства являются важными факторами пригодности вирусоподобных частиц для создания вакцин на их основе [50].

В доклинических испытаниях по пероральной и интраназальной иммунизации мышей вирусоподобными частицами с добавлением и без добавления усиливающего иммунный ответ адъюванта (кольфер таксин) были описаны специфический гуморальный ответ (у 100% мышей появлялись специфические IgG-антитела) и локальная реакция организма в виде повышения уровня IgA в фекалиях [58, 59]. Затем умеренная иммуногенная активность (5-кратное увеличение титра IgG-антитела) вирусоподобных частиц в отсутствие адъювантов была продемонстрирована в клинических испытаниях на добровольцах [60]. Следует отметить, что иммунный ответ при пероральном введении вирусоподобных частиц был значительно ниже, чем при инфицировании добровольцев живым норовирусом. Во всех перечисленных работах использовали вирусоподобные частицы, полученные в бактериальной системе.

Недавно были созданы экспериментальные линии трансгенных растений (так называемых картофелей), экспрессирующих поверхностный белок норовирусов [61, 62]. При трехкратной иммунизации трансгенным картофелем у добровольцев были получены следующие результаты: серологическая реакция в виде повышения уровня IgG, IgM в 12 и 7 раз зафиксирована у 30 и 40% испытуемых соответственно; повышение секреторных IgA в стуле и моноклональных клонах крови отмечено у 30 и 95% пациентов соответственно [62]. Остаётся неясным, насколько сильную и продолжительную защиту способен обеспечить иммунный ответ, индуцируемый вирусоподобными частицами. В данном момент нет возможности создания диагностиком для выявления вируснейтрализующих антител (так как до сих пор не удается культивировать калицивирусы) и оценки напряжённости защитного иммунитета. Кроме того, существуют опасения о развитии иммунной толерантности к живым вирусам после пероральной или интраназальной вакцинации с использованием трансгенных растений. Тем не менее в скором времени следует ожидать продолжения исследований по разработке мукузальных вакцин. В управлении по пищевым продуктам и лекарственным средствам США (FDA) в настоящее время находятся на рассмотрении проекты, посвященные иммунизации добровольцев норовирусными вакцинами, полученным...
ными из трансгенных томатов, с последующим инфицированием живым норовирусом [63].

В настоящем обзоре литературы обобщены последние данные по таксономии и классификации, эпидемиологии и клинике калицивирусной инфекции, описаны основные работы, касающиеся иммунного ответа и проблемы резистентности к данной инфекции. Некоторые вопросы патогенеза и иммунологии остаются нерешенными, и подчас противоречивыми, но тем не менее заставляющими внимания. В связи с большим количеством работ, посвященных лабораторной диагностике норовирусной и саповирусной инфекции, нам не представляется возможным подробное освещение этой проблемы в настоящем обзоре.

Литература