РАЗРАБОТКА TEXНОЛОГИИ REAL-TIME PCR ДЛЯ КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО OПРЕДЕЛЕНИЯ NEISSERIA GONORRHOEAE B КЛИНИЧЕСКОМ МАТЕРИАЛЕ

Гущин A.E., ІІипуаин Г.A
ГУ Центральный НИИ тидемиолозии МЗСР РФ Центр молекулярной диагностики инфекиионннх болезнсй
Амплификационные технологии в лабораториой диагностике гонореи постепенно приходят на смену классическим методам исслелований - микроскопическому и бактериологическому в силу более высокой чувствительности и специфичности, отсутствию жестких требований к условиям транспортировки материала, и высокой производительности при скрининговых исследованиях. Это подтвержлается сушествованием и использованием за рубежом коммерческих наборов на основе альтернативных амплификационных технопогий PCR. LCR, TMA |1]. В нашей

стране до настоящего времени использование ПЦР в лабораторной диагностике гонореи не регламентировано. В то же время существует ряд принципиальных вопросов, от решения которых зависит результативность использования ПЦР как альтернативы традиционным методам диагностики. Во-первых, необходимо сформулировать требование к аналитической чувствительности существующих и разрабатываемых ПЦР тест-систем и оценитъ аналитические возможности традиционных методов лабораторной диагностики - микроскопии и посева. Известно, что микроскопический тест при более низкой аналитической чувствительности по сравнению с бактериологическим, тем не менее, имеет достаточно высокую диагностическую чувствительность при исследовании материала от мужчин с острой гонореей. И, наоборот, у женцин, в первую очередь не имеющих выраженных симптомов, микроскопический анализ материала на гонококки мalo информативен. По-видимому, одной из причин является различное количество микроорганизмов в урогенитальном тракте у мужчин и женцин при разных формах гонококковой инфекции. Чувствительность бактериологического метода может также значительно варьировать, затрудняя сопоставление результатов разных лабораторий. Для этой цели необходимо разработать подход к количественной оценке Ng в исследуемом клиническом материале из урогенитального тракта мужчин и женцин с разными формами гонококковой инфекции. Во-вторых, необходимо иметъ инструмент для оценки специфичности предлагаемых ПЦР-тест-систем. Зарубежные исследования, проведенные на большом количестве клинического материала показали, что участки генома NG (сppB, M:NgoPll и др.), часто используемые в качестве мишеней для амплификации, могут обнаруживаться и у непатогенных нейссерий в силу рекомбинационных процессов и обмена генетическим материалом. В силу этого, в некоторых отечественных тест-системах, включая и *Амплисенс Neisseria gonorrhoeaе* производства ГУ ЦНИИ эпидемиологии МЗСР анализ результатов ПЦРисслелований осуществляется на основании наличия или отсутствия продуктов амплификации двух независимых мишеней. В некоторых আ друежных работах в случае спорных или неопределенных результатов ПЦЦ-исследоцний предлагдется использовать подтверждающий тест на основе результатов амплификации фрагмента 16 S -рДНК N. gonorrhoeae с детекцией продукта амплификации при помощи специфического для N. gonorтhoeae гибридизационного зонда $[2,3]$.

Появившаяся в последние годы технология Real-time PCR (ПLP с детекцией продуктов амплификации в режиме реального времени или ПЦР-РРВ) с использованием флюоресцентно-меченньх (ФМ) зондов дает возможность проводить качественное и количественное определение ДНК возбудителей в клиническом материале.

Целшо предлагаемой работы является разработка набора реагентов для качественного к количественного определения ДНК N. gonorthoeaе в

ктиническом материале, используемом для лабораторных исследований, на основе технологии ПЦР-РРВ с ФМ-зондом.

Результаты и обсуждение.

Выбор мишени для амплификации. В качестве мишени был выбран ген 16S-pPHK N. gonorrhoeae. Данный ген в геноме N. gonorrhoeae представлен в 4 копиях, что позволяет по сравнению с однокопийными мишенями иметь более высокую анатитическую чувствительность. В тоже время, в отличие от других мультикопийных мишеней копийность рибосомальных генов у рамиичных клинических изолятов в пределах вида постоянна. Это с учетом других факторов обеспечивает преемственность результатов определения концентрации ДНК микроорганизмов и количества микробных клеток. Вторым аргументом в пользу выбора данной мишени явился болыной объем информации о нуклеотидных последовательностях рибосомальных генов различных прелставителей рода Neisseria на основании которой можно выбрать наиболее спепифический для N. gonorrhоеае участок. Как известно, рибосоматьные гены имеют миниматьные отличия по сравненик) с друтими генами между ралличными клиническими изолятами, а кроме того в менышей степени участвуют в горизонтальном обмене генетическои информацией. Сравнительный анализ нуктеотидных последовательностей разтичных клинических изолятов, опубликованный в GeneBank, позволия выбрать консервативный и высокоспецифичный для N. gonorthoeae yчасток. Несмотря на то. что праймеры, фланкируюиие это участок, бити слешфичны не только в отношении N. gonorrhoеае, но и дти некоторых друпих видов нейссерии, высокая селективност, теста обеснечиватась 9 M TiqMan-зондом

Дтя исстетования спенифиности теста быти сконстриировани разтичнье варианты ТачMаи-зондов. Сиецифичность выбранных зонон проверядась, на пролуктах ампыфикаиии наиботее гомологиниюо дтя
 I(f копии, мт) коннентрании ДНК Nim набтюдатось !ветичение тотьк фкновоно ситната флкоресиениии и отсуттвовано наконтение сисия中инеского фтюореснентного сигната. Дія снижения фонового сиюната в один из вариантов Φ М зонда быта введена мутания. обесие нинаюная лопотнитетнук специфичность в отношении ДНК V. gопогтосас Bıеление мутации ие сказаюось на аналитическои џувствитетьнотт теста и воспроизодимости резутьтатов при амптификаиии разных коннентрания IHK Ng .

Количественный анани дНК Ng с помоиью ПЦР. PPB. Дıя прошедения количественного анатиза были приготовлены ДНК-ка1ибраторы. С этой целью из клеточной кутьтуры N. gonorthoeae был приготовтен препарат ДНК, концентрация которого быта измерена метолом лимитируюших разведений с использованием праймеров к тену шитозин-дНKметиттрансферазы. На основе препарата были приготовлены 10 -хрантные

разведения ДНК, которые служили калибраторами при количественной оценке результатов ПЦР-РРВ.

Для учета потерь ДНК при обработке клинического материала бы сконструирован неконкурентный внутренний контрольный образец (нВКО), добавляемый при пробоподготовке в каждый исследуемый образец. ПЦР-РРВ проводится в формате мультиплекс с двумя парами праймеров (для N. gonorrhoeae и нВКО) и соответствуюшими TaqMan-зондами, имеющими разные флюоресцентные метки. Эффективность пробоподготовки оценивается с использованием соответствующих калибраторов для нВКО и служит поправочным коэффициентом при окончательном расчете концентрации ДНК Ng в клиническом материале.

Эффективность обработки клинического материала с использование наборов «ДНК-сорб-А», входящих в состав тест-систем «Амплисенс» и предназначенных для диагностики урогенитальных инфекций. Материалом для лабораторной диагностики гонококковой инфекции служат соскобы из цервикального канала и уретры у женщин и уреты у мужчин. Перспективным для скрининговых исследований с использованием амплификационных технологий считаются вагинальные мазки и образцы первой порции утренней мочи у мужичин и женщин.

Для количественной оценки микроорганизмов в исследуемом материале крайне важна стандартизация эффективности выделения ДНК. В независимых экспериментах по оценке эффективности экстракции клинического материала с помощью набора «ДНК-сорб-А» на различном клиническом материале, полученном из урогенитального тракта мужчин женшин, было показано, что эффективность выделения ДНК составила в среднем 76% (от 60 до 90% в зависимости от наличия и отсутствия различных примесей, включая кровь, слизь, осадок). При этом отсутствовали пробы, в которых в результате ингибирования или потерь полностью не определялся продукт амплификации ВКО. В тоже время при тестировании образцов первой порции утренней мочи и материала из уретры мужчин и женщин, а также из цервикального канала, например набором «Cobas Amplicor CT Test», используюцим экспресс-метод обработки клинического, количество невалидных результатов в из-за ингибирования варьировало от 1.9 до 45\% [4]

Заклочение.

В процессе проведенной работы была разработана методика на основе ПЦР-РРВ с ФМ-зондом для количественного анализа ДНК N. goпогтюеае в материале, используемом в лабораторной диагностике гонококковой инфекции. Такой анализ позволит сформулировать требования к аналитическим характеристикам применяемых и разрабатываемых ПЦР-тестсистем, а также с учетом аналитических характеристик традиционных методов (микроскопии и бактериологического посева) объективно оценить их диагностическую тувствительность и специфичность на разном клини-

ческом материале, полученном от разных групп пациентов. В качественном варианте разработанная методика может служить подтверждающим тестом при получении спорных результатов разными лабораторными методами.

Jumepamypa.

1. CDC. «Screening Tests To Detect Chlamydia trachomatis and Neisseria gonorrhoeae Infection», 2002 MMWR , №51(RR15); 1-27
2. Farrel D.J., «Evaluation of Amplicor Neisseria gonorrhoeae PCR using cppB Nested PCR and 16SrRNA PCR» JCM., 1999., V37., PP.386-390.
3. Diemert D.J., et al., «Confirmation by 16 S rRNA PCR of the Cobas Amplicor CT/NG Test for Diagnosis of Neisseria gonorrhoeae Infection in a Low-prevalens Population»., JCM, 2002., V.40, PP. 4056-4059.
4. Toye B., et al., «Inhibition of PCR in Genital and Urine Specimens Submitted for Chlamydia trachomatis Testing»., JCM, 1998.,V.36., P.23562358.
